区块链钱包下载im|示波器扫描系统的工作原理
区块链钱包下载im|示波器扫描系统的工作原理
示波器扫描的原理 - 百度文库
示波器扫描的原理 - 百度文库
新建
上传
最近
收藏
下载
新客立减
登录
示波器扫描的原理
示波器扫描的原理是利用电子束在屏幕上进行水平和垂直的扫描,从而绘制出输入信号的波形图像。具体来说,示波器通常由水平扫描和垂直扫描两部分组成。水平扫描控制电子束在屏幕上进行水平移动,而垂直扫描则控制电子束在屏幕上进行垂直移动。
在水平扫描过程中,示波器通过水平扫描电压控制电子束的水平位置。水平扫描电压通常由示波器的时间基准电路提供,可以控制扫描的速度。示波器的水平扫描电压可以调节,从而改变水平扫描的速度和观察到的波形的时间尺度。
在垂直扫描过程中,示波器通过垂直扫描电压控制电子束的垂直位置。垂直扫描电压通常与输入信号相互作用,可以使电子束在屏幕上不同的垂直位置绘制出输入信号波形的不同幅度。
结合水平和垂直扫描,示波器可以绘制出输入信号的完整波形图像。例如,如果输入信号是周期性的正弦波,示波器将在屏幕上绘制出一条连续的正弦曲线。如果输入信号是脉冲信号,示波器将在屏幕上绘制出一系列脉冲。
通过观察示波器屏幕上的波形图像,可以分析和测量输入信号的频率、幅度、相位等特性。示波器的扫描原理使其成为电子工程师和科学家在调试电路、研究信号特性等方面重要的工具。
示波器原理_示波器扫描信号是什么-CSDN博客
>示波器原理_示波器扫描信号是什么-CSDN博客
示波器原理
最新推荐文章于 2022-02-01 11:42:19 发布
VIP文章
xslhust
最新推荐文章于 2022-02-01 11:42:19 发布
阅读量7.3k
收藏
11
点赞数
3
分类专栏:
电子电路
文章标签:
示波器
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xsllove/article/details/87260147
版权
模拟示波器
组成:示波管、扫描信号发生器、水平和垂直放大器、同步电路、电源电路。
1.示波管
由电子枪、偏转系统、荧光屏组成。
电子束的运动是X、Y两个方向的运动的叠加。
2.扫描信号发生器
产生扫描信号(形状为锯齿形)
3.水平和垂直放大器
水平放大器:扩展扫描信号;
垂直放大器:放大或缩小被测信号。
4.同步电路
使扫描信号和被测信号同步变化,形成稳定波形。周期性的对被测信号采集触发脉冲,并且同步触发扫描电路使其产生扫描信号。
5.电源电路
原理:
将扫描信号加到水平偏转板上,将被测信号加在垂直偏转板上,最终扫描信号相当于提供了水平参考的时间轴,Y轴则是反映被测信号的变化规律。而在荧光屏上看到被测信号的波形,当被测信号的频率是扫描信号的整数n倍时,是因为荧光屏的余晖效应和人的视觉暂留效应,能够看到n个完整波形。
电压幅度的测量=每一格表示的电压值(V/DIV)x波形峰峰值的高度(H)。最小分度值为0.2格。估读按最小分度值的1/5.
信号频率的测量:1,信号周期=水平一格的扫描时间x一个波形的水平长度。f=1/T
2,利用李萨如图来测量信号的频率。
优惠劵
xslhust
关注
关注
3
点赞
踩
11
收藏
觉得还不错?
一键收藏
知道了
0
评论
示波器原理
模拟示波器组成:示波管、扫描信号发生器、水平和垂直放大器、同步电路、电源电路。1.示波管由电子枪、偏转系统、荧光屏组成。电子束的运动是X、Y两个方向的运动的叠加。2.扫描信号发生器产生扫描信号(形状为锯齿形)3.水平和垂直放大器水平放大器:扩展扫描信号;垂直放大器:放大或缩小被测信号。4.同步电路使扫描信号和被测信号同步变化,形成稳定波形。周期性的对...
复制链接
扫一扫
专栏目录
5分钟读懂示波器的工作原理
07-19
示波器是我们电子工程师的左膀右臂,把示波器玩好玩精是我们的必备技能之一。而古人早就教育我们不仅要知其然,更要知其所以然。
示波器原理图
05-27
示波器原理图,主要是示波器的硬件设计的资料,等都能
参与评论
您还未登录,请先
登录
后发表或查看评论
示波器的使用及其原理
weixin_61872457的博客
09-26
1万+
一、示波器的工作原理
示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
二、使用方法
(1)输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道
【DIY分享】示波器(原理图+源码+仿真)
Smart_Devil的博客
12-19
7318
【DIY分享】示波器(原理图+源码+仿真序介绍第一套第二套第三套结语资料包:Proteus软件示波器DIY资料更多精彩,等你发现~
序
离开学校这么久,好久没DIY东西了,现在周边环境也不太允许我折腾这些(也可能变懒了),但是看看别人设计的也是蛮不错的,有仿真的稍微玩玩也很香,今天就给大家准备了三套示波器的DIY设计资料,有一套代码只留了核心的部分,另外的都完整,所以在动手之前先考虑下自己的设计和技术的能力是否可以支撑你进行实物的DIY,这三套的设计难度也分了层次,所以根据自己的情况进行,具体选哪套进行,就
使用示波器调李萨茹图形
weixin_53713163的博客
12-18
1万+
使用示波器调李萨茹图形
原理:李萨茹图形是当示波器的x轴输入一个波形,用它作为扫描信号(而不是用示波器本身的锯齿波来扫描),同时在y轴输入另一个信号,当两个信号的频率之比正好形成整数比时产生的图样。
作用:李萨茹图形可以比较两个信号之间的频率比,当一个信号的频率为已知时,就可以测出另一个信号的频率。
实验步骤:
1.示波器初次使用前或者旧藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度,垂直放大电路直流平衡调整。首先进行示波器的校准
(a)插示波器电源线打电源关电源指示灯亮待现扫描线调节亮度适
FFmpeg4.3开发系列之14:音频探测器波形图及播放器实战
06-01
敬告:该系列的课程在抓紧录制更新中,敬请大家关注。敬告: 该系列的课程涉及:FFmpeg,WebRTC,SRS,Nginx,Darwin,Live555,等。包括:音视频、流媒体、直播、Android、视频监控28181、等。 我将带领大家一起来学习:Qt麦克风数据探测、FFmpeg解码音频数据、音频波形图、音频播放器。具体内容包括:1.Qt采集麦克风并探测数据,生成动态矩形图。2.FFMpeg解码音频数据,生成PCM数据,并绘制波形图。3.音频播放器实战。 音视频与流媒体是一门很复杂的技术,涉及的概念、原理、理论非常多,很多初学者不学 基础理论,而是直接做项目,往往会看到c/c++的代码时一头雾水,不知道代码到底是什么意思,这是为什么呢? 因为没有学习音视频和流媒体的基础理论,就比如学习英语,不学习基本单词,而是天天听英语新闻,总也听不懂。所以呢,一定要认真学习基础理论,然后再学习播放器、转码器、非编、流媒体直播、视频监控、等等。 梅老师从事音视频与流媒体行业18年;曾在永新视博、中科大洋、百度、美国Harris广播事业部等公司就职,经验丰富;曾亲手主导广电直播全套项目,精通h.264/h.265/aac,曾亲自参与百度app上的网页播放器等实战产品。目前全身心自主创业,主要聚焦音视频+流媒体行业,精通音视频加密、流媒体在线转码快编等热门产品。
示波器的使用和李萨如图形
zylhxq的博客
12-17
9765
示波器的使用和李萨如图形
1,示波器的工作原理:利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(传统模拟示波器的工作原理)。示波器是一种用途十分广泛的电子测量仪器。能把肉眼看不见的电信号变换成可视化图像,便于研究各种电现象的变化过程。
2,面板介绍
(1)亮度和聚焦旋钮
亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。 聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。
(2)信号输入通道
常用示波器多为
你真的懂示波器吗?工作面试中会用到的示波器知识(转)
weixin_30872789的博客
06-05
580
记得我2013年去EMC面试硬件工程师的时候,整个面试过程表现都还不错,最后问了我一些示波器的东西,提到了一个问题说,用一个带宽50M的示波器去采样一个100M的信号,结果是怎么样的?我当时没啥概念,不太会,幸好面试的工程师是我本科的校友,给了我一些提示,问题算是回答出来了。在之后的一段时间的,我特意做了这个实验,然后对示波器进行了一些研究与学习。贴出一部分基本重要的东西出来。对这个问题有兴趣的也...
大学物理实验-仿真实验-示波器的原理
热门推荐
zombotany的博客
02-01
3万+
仿真实验-示波器的原理
目录一.实验目的二.实验器材三.实验原理1.示波器的结构(1)示波管(2)控制电路的组成及其作用2.示波器的示波原理3.李萨如图形的基本原理四.实验内容步骤1.用xxx轴的时基测信号的时间参数。2.观察李萨如图形并测频率。五、实验数据记录与处理.(1)方波信号频率(2)信号发生器频率与示波器测量频率的关系(3)观察非对称方波(4)观察三角信号六、实验误差分析七、心得体会
一.实验目的
1.了解示波器的基本结构与工作原理。
2.初步掌握示波器的使用方法。
3.使用示波器观察电信号的波形
示波器的工作原理和内部结构等基础知识
03-04
示波器的的说明和功能。包括模拟示波器和数字存储示波器的详细介绍。
示波器原理和应用
04-16
阐述了示波器在高速信号领域的实际应用,以及测量波形的具体分析
汉泰示波器原理图
01-17
国内知名品牌汉泰的一款带宽200M示波器原理图,主体由三星处理器S3C2440和FPGA搭建。内容详细准确无误,供相关技术开发人员做参考。
数字示波器原理大全_数字示波器
07-15
数字示波器原理大全,详细讲述了数字示波器的使用原理和使用方法,以及使用说明,涵盖各个类型比较通用的数字示波器
数字示波器原理图及PCB
01-22
基于STM32的数字示波器, 使用前端程控模拟电路和上层电路板,uCOS-II,uCGUI,FFT,SD,上位机等等.
示波器原理与使用
09-19
示波器 原理与使用 触发 采样 存储示波器 原理与使用 触发 采样 存储示波器 原理与使用 触发 采样 存储
gensim-3.7.1-cp35-cp35m-win_amd64.whl.zip
03-15
gensim-3.7.1-cp35-cp35m-win_amd64.whl.zip
SRA-ADMIN是一个前后端分离的后台管理系统,引入了市面上常用的工具包以及核心框架,实现了用户、字典、角色、权限等常见功能
03-15
SRA-ADMIN是一个前后端分离的后台管理系统,引入了市面上常用的工具包以及核心框架,实现了用户、字典、角色、权限等常见功能,能够快速搭建一个web项目。资源来源网络以及部分开源社区仅供参考与学习项目不可商用、一切后果由使用者承担若是侵权请联系删除
MATLAB印刷品缺陷检测.zip
03-15
MATLAB课题,课题为基本框架思路,提供答疑设计,不收费,积分默认0,如需积分,为自动上浮,需要的可自行下载,祝学习愉快!
VB语言vb人事管理源程序+论文
最新发布
03-15
VB语言vb人事管理源程序+论文本资源系百度网盘分享地址
stm32数字示波器原理图
01-01
STM32数字示波器原理图是基于STM32微控制器的数字示波器设计的电路图。在该原理图中,通常包括STM32微控制器、ADC模块、存储器、显示屏和其他外围设备。 首先,STM32微控制器是整个数字示波器的核心部件,它负责对...
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
xslhust
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
1
原创
162万+
周排名
98万+
总排名
7318
访问
等级
87
积分
1
粉丝
3
获赞
0
评论
11
收藏
私信
关注
热门文章
示波器原理
7315
分类专栏
电子电路
1篇
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
2019年1篇
目录
目录
分类专栏
电子电路
1篇
目录
评论
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
示波器的原理和使用方法 - 知乎
示波器的原理和使用方法 - 知乎切换模式写文章登录/注册示波器的原理和使用方法泰勤科技致力于测试测量领域的综合服务商在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用 表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本 章从使用的角度介绍一下示波器的原理和使用方法。1、示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。1.1、示波管阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。图1示波管的内部结构和供电图示1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余 辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很 细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作 用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴 极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与 阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。电子束从 阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、 A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调 节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。3.偏转系统偏转系统控制电子射线方向,使荧 光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板 在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。4.示波管的电源为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴 极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前 加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。1.2示波器的基本组成从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变 化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。图2示波器基本组成框图被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足 够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负) 极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏 之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系 统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。2、示波器使用本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。2.1荧光屏荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。2.2示波管和电源系统1.电源(Power)示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。2.辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。3.聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。4.标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。2.3垂直偏转因数和水平偏转因数1.垂直偏转因数选择(VOLTS/DIV)和微调在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。2.时基选择(TIME/DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于2μS×(1/10)=0.2μSTDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。2.4输入通道和输入耦合选择1.输入通道选择输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅 显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选 择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1” 位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器, 从荧光屏上读出的电压值乘以10才是信号的实际电压值。2.输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、 直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含 有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。2.5触发第一节指出,被测信号从 Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生 重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接 影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。1.触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。2.触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。低 频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电 路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。3.触发电平(Level)和触发极性(Slope)触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时 针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产 生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。2.6扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的, 真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。数字示波器使用必须注意问题前言数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。区分模拟带宽和数字实时带宽带宽是最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随 机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一 般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声 称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指 其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会 给测量带来意想不到的误差。有关采样速率采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。1.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现 象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于 一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是, 说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不 会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生:·调整扫速;·采用自动设置(Autoset);·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。·如果示波器有InstaVu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。2.采样速率与t/div的关系每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出:fs=N/(t/div)N为每格采样点当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。下面是TDS520B的一组扫速与采样速率的数据:表1扫速与采样速率t/div(ns)1252550100200fs(GS/s)502510210.50.25综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。数字示波器的上升时间在模拟示波器中,上升时间是的一项极其重要的指标。而在数字示波器中,上升时间甚至都不作为指标明确给出。由于数字示波器测量方法的原因,以致于自动 测量出的上升时间不仅与采样点的位置相关,如图2中a表示上升沿恰好落在两采样点中间,这时上升时间为数字化间隔的0.8倍。图2中的b的上升沿的中部有 一采样点,则同样的波形,上升时间为数字化间隔的1.6倍。另外,上升时间还与扫速有关,下面是TDS520B测量同一波形时的一组扫速与上升时间的数 据:表2扫速与上升时间t/div(ms)502010521tr(μs)800320160803216由上面这组数据可以看 出,虽然波形的上升时间是一个定值,而用数字示波器测量出来的结果却因为扫速不同而相差甚远。模拟示波器的上升时间与扫速无关,而数字示波器的上升时间不 仅与扫速有关,还与采样点的位置有关,使用数字示波器时,我们不能象用模拟示波器那样,根据测出的时间来反推出信号的上升时间。广东泰测电子有限公司(简称:广东泰测)成立于2021年,是深圳市泰勤科技有限公司的子公司,公司立身于测试测量仪器行、工业与制造行业,与多家国内外业界著名仪器厂商有着长远而稳固的战略合作关系,公司成立至今,紧跟世界工业与制造业发展趋势,为广大的客户提供了多元化的服务,产品用于研发、生产、测试、检测、高校实验室等,涉及领域有: 5G、人工智能、新基建、智能制造、智慧城市、光伏、新能源、电源、电池、半导体、储能等引领未来科技的新行业,在多个领域提供了具有竞争力的综合性测试服务和解决方案,满足客户各类需求。主营:数字示波器、探头、交直流电源、交直流电子负载、万用表、数据采集器、功率分析仪、信号发生器、热像仪、示波记录仪、安规测试仪等产品代理品牌:RIGOL普源精电,ITECH艾德克斯,CYBERTK知用电子,EEC华仪,FLUKE福禄克,KHC北京科环,Tektronix泰克,KEITHLEY吉时利,KEYSIGHT是德科技,HIOKL日置等品牌厂家编辑于 2022-04-15 14:28数字系统设计数字信号示波器赞同 13添加评论分享喜欢收藏申请
示波器原理 - 什么是示波器?示波器的使用方法 - 知乎
示波器原理 - 什么是示波器?示波器的使用方法 - 知乎首发于示波器使用方法切换模式写文章登录/注册示波器原理 - 什么是示波器?示波器的使用方法是德科技 Keysight Technologies已认证账号示波器是设计和测试电子设备和器件最常用的工具。数字储存示波器(简称DSO)和混合信号示波器(简称MSO)都是强大的仪器,用于显示及测量随时间变化的电子信号,并且能有助于确定哪一个器件运行正常,而哪一个器件出现故障。示波器还能帮助您确定新近设计的器件是否能按照您想要的方式运行。本文简要介绍示波器原理,让您了解什么是示波器,以及如何操作示波器。我们将会探讨示波器的应用,并概括介绍其基本的测量和性能特征。本文还将介绍不同类型的探头,并讨论它们的优缺点。示波器电子技术在我们的生活中无所不在。每天都有上百万人使用电子产品,例如手机、电视和计算机。随着电子技术的进步,这些产品的工作速度也变得越来越快。如今,大多数电子产品都采用了高速数字技术。工程师们应当能够精确地设计和测试他们在高速数字产品中所使用的元器件。他们在设计和测试元器件时所使用的仪器必须特别适合处理高速和高频的特性才行,而示波器正好是这样的一种仪器。示波器是一种功能强大的工具,在设计和测试电子器件方面很有用。它们在您判定系统器件是否正常方面扮演极为重要的角色,而且还能帮助您确定新设计的元器件是否按照预想的方式进行工作。示波器的功能远比数字万用表更强大,因为它们可以使您观察电子信号的实际情况。示波器的应用极为广泛,包括通用电子测试、工业自动化、汽车、大学的研究实验室以及航空航天 / 国防产业等。许多公司都依赖示波器来查找缺陷,从而制造出质量过硬的产品。好文推荐: 电子信号示波器的主要用途是显示电子信号。通过观察示波器上显示的信号,您可以确定电子系统的某个元器件是否在正常工作。因此,要想了解示波器的工作方式,必须先要了解信号的基本示波器原理。波形特性电子信号会以波形或脉冲的形式出现。波形的基本特性包括:幅度 - 在工程应用中经常使用的幅度定义主要有两个。第一种通常称为峰值幅度,定义为干扰信号的最大位移量。第二种是均方根(RMS)幅度。要计算波形的 RMS 电压,必须将波形值平方并求出平均电压,然后再求平方根。对正弦波来说,RMS 幅度等于峰值幅度的 0.707 倍。相移 - 相移是指两个其他条件都相同的波形之间的水平位移量,以度或弧度为单位。正弦波的周期以 360 度来表示。因此,如果两个正弦波相差半个周期,那么它们的相对相移就是 180 度。周期 - 波形的周期是指波形重复出现一次所花费的时间,以秒为单位。频率 - 每个周期性波形都有一个频率。频率是指波形在一秒内重复出现的次数(如果您使用 Hz 为单位)。频率与周期互为倒数。图 1. 正弦波的峰值幅度和 RMS 幅度图 2. 三角波的周期波形 波形是指波的形状或图像。波形可以提供许多有关信号的信息,例如,它可以告诉您电压是否突然发生改变、呈线性变化或保持不变。标准的波形有很多种,本节仅介绍您最常遇到的几种。正弦波 - 正弦波通常与交流(AC)电源有关,例如您屋内的电源插座。正弦波的峰值幅度并非一直恒定,如果峰值幅度会随着时间不断地下降,我们就称这种波形为阻尼正弦波。图 3. 正弦波方波 / 矩形波 - 方波会在两个不同的值之间周期性地跳动,因此在高点和低点部分的长度会相等。矩形波不同的地方在于高、低点部分的长度并不相等。图 4. 方波三角波 / 锯齿波 - 在三角波中,电压会随着时间呈线性变化。它的信号边沿称为斜波,这是因为其波形会斜升或斜降到某个电压。由于锯齿波前面或后面的信号沿会随着时间产生线性的电压响应,所以看起来与三角波类似。但对面的信号沿几乎是立即下降的。脉冲 - 脉冲是指突然出现在固定电压中的干扰,就像在一个房间中突然打开电灯,然后迅速熄灭电灯的情形。一连串的脉冲被称为脉冲串。延续前面的比喻,这就好比不断重复快速开灯与关灯的动作一样。脉冲是信号中常见的毛刺或错误波形。如果信号只传送一条信息,那么脉冲也可看作是一个波形。图 5. 三角波图 6. 锯齿波图 7. 脉冲复合波波形也可以是以上各种波形的混合。它们不一定要具备周期性,而且可以是非常复杂的波形。模拟信号与数字信号的比较 模拟信号代表给定范围内的任意值。您不妨想象一下模拟时钟,时针每隔 12 个小时旋转 1 周。在此期间,时针一直不断移动,不会出现读值跳动或不连续的情形。现在将它与数字时钟比较一下。数字时钟仅显示小时和分钟,因此是以分钟作为间隔时间。它会一下子从 11:54 跳至 11:55。数字信号同样具备离散和量化的特性。通常,离散信号具有两个可能的值(高或低,1 或 0 等),因此信号会在这两个可能的值之间上下跳动。什么是示波器,您为什么需要它?信号完整性示波器的主要用途是精确地显示电子信号。因此,信号完整性显得非常重要。信号完整性是指示波器重建波形并且精确显示原始信号的能力。由于在示波器的波形不同于真实信号时,测试毫无意义,所以信号完整性低的示波器是没有价值的。但是,无论示波器的性能有多高也无法完全再现真实信号。这是因为当您将示波器连接到电路时,示波器就会变成电路的一部分。换言之会有一些负载效应产生。仪器制造商虽然尽力将负载效应降至最低,但就某种程度而言它们仍然会存在。“高信号完整性对于示波器进行精确测量至关重要。 要想实现稳定设计,您必须知道需要关注哪些技术指标。”示波器的外观一般,现代示波器的外观与图 8 中的示波器相似。然而示波器种类繁多,您的示波器看起来或许会与之不尽相同。尽管如此,大多数示波器都具备一些基本特性。多数示波器的前面板大致可分为几个区域:通道输入、显示屏、水平控制、垂直控制以及触发控制。如果您的示波器未配备 Microsoft Windows 操作系统,那么它很可能会提供一组功能键,用于控制屏幕上的菜单。您可以通过通道输入接头(即插入到探头的连接器)把信号发送到示波器中。显示屏是用来显示这些信号的屏幕。水平和垂直控制区域包含了一些旋钮和按键,可用于控制在显示屏上的信号的水平轴(通常表示时间)和垂直轴(通常表示电压)。触发控制支持您对示波器进行设置,确定在何种条件下时基可以执行采集任务。图 8. Keysight InfiniiVision 2000 X 系列示波器的前面板示波器的后面板如图 9 所示。图 9. Keysight Infiniium 9000 系列示波器的后面板如图所示,许多示波器都拥有与个人计算机相同的连通性,包括光盘驱动器、CD-RW 驱动器、DVD-RW 驱动器、USB端口、串行端口,以及外部监测器、鼠标和键盘输入等。示波器的用途示波器是一种测试与测量仪器,可显示某个变量与另一个变量之间的关系。例如,它可以在显示屏上绘制一个电压(y 轴)—时间(x 轴)图。图 10 显示了一个图表示例。如果您需要测试某个电子器件是否正常工作,这项功能会很有用。如果您知道移除该器件之后信号的波形会发生什么变化,您就可以利用示波器来查看这个器件是否在输出正确的信号。请注意,x 轴和 y 轴会以网格线分成一些格子。您可以利用这种网格线执行手动测量,但新型示波器能够自动执行大多数的测量,并且得到更精确的结果。示波器的功用不只是绘制电压—时间图。示波器提供多个输入(也称通道),每个通道都能独立工作。因此,您可以将通道 1 连接到某个器件,并将通道 2 连接到另一个器件。随后,示波器可以绘出通道 1 与通道 2 分别测得的电压之间的比较图。该模式称为示波器的 XY 模式,适用于绘制 I-V 图或 Lissajous 图。根据 Lissajous 图的形状可以得知两个信号之间的相位差与频率比。图 11 显示了 Lissajous 图及其代表的相位差/频率比。图 10. 在示波器上显示的方波的电压-时间图图 11.Lissajous 图形示波器的类型模拟示波器第一种是模拟示波器,它使用阴极射线管来显示波形。屏幕上涂有荧光物质,只要被电子束集中就会发光。当连续的荧光点亮起时,您可以看到信号的再现图形。为了使示波器稳定地显示波形,必须使用触发。当显示屏上的整个波形迹线完成时,示波器会等到特定的事件发生后(例如,上升沿超过某个电压值)再次开始显示迹线。未经触发的显示画面是没有用处的,因为它显示的波形并不稳定(同样适用于下面将会讨论的 DSO 和 MSO 示波器)。模拟示波器非常实用,因为荧光点会继续发光一段时间而不会马上消失。您可以在几个彼此重叠的示波器迹线上看到信号的毛刺或不规则性。由于当电子束击中屏幕时便会显示波形,所以显示信号的亮度与实际信号的亮度有关。这使显示屏与三维显示屏类似(换句话说,x 轴代表时间,y 轴代表电压,而 z 轴则代表亮度)。模拟示波器的不足之处是无法使显示画面 “固定”,从而使波形停留较长的时间。当荧光物质不再发光时,该部分的信号也随之消失。此外,您无法自动执行波形测量,必须使用显示屏上的网格线进行手动测量。电子束在进行水平扫描和垂直扫描时存在一个速度上限,这会导致模拟示波器可显示的信号类型也十分有限。尽管模拟示波器目前还拥有不少用户,但其销量大不如前。数字示波器已经成为用户的主流选择。数字存储示波器(DSO)数字存储示波器(通常称为 DSO)是为了弥补模拟示波器的诸多不足而发明的。 DSO 输入一个信号,并通过模数转换器将其数字化。图 12 显示了是德科技数字示波器采用的一种 DSO 体系结构。图 12. 数字示波器的体系结构衰减器会调整波形。垂直放大器会在波形传到模数转换器(ADC)时做进一步的调整。ADC 会对收到的信号进行采样和数字转换,随后将这个数据存入存储器中。触发器会寻找触发事件,而时基会调整示波器的时间显示。在示波器显示信号之前,微处理器系统可以执行您指定的其他后期处理任务。数据以数字形式表示,可使示波器执行各种波形测量。信号可以无限期地存放在存储器中,也可打印或通过闪存、LAN、 USB 或 DVD-RW 传输到计算机中。事实上,您还能通过软件提供的虚拟前面板在计算机上控制和监测示波器。混合信号示波器(MSO)DSO 的输入信号属于模拟信号,通过数模转换器将其数字化。随着数字电路技术的蓬勃发展,同时监测模拟信号与数字信号变得越来越重要。鉴于此,示波器厂商着手生产能够触发和显示模拟与数字信号的混合信号示波器。这类仪器通常具备少数几个模拟通道(2 或 4)和更多的数字通道(参见图 13)。图 13. 混合信号示波器的前面板输入提供了 4 个模拟通道和 8 个数字通道混合信号示波器的优点是可以触发任意组合的模拟与数字信号,并且显示以相同时基进行关联的所有信号。便携式 / 手持式示波器顾名思义,便携式示波器是指外形小巧、利于随身携带的示波器。如果您需要在许多地点或实验室的不同工作台之间移动示波器,那么便携式示波器就是您的最佳选择。图 14 显示了 Keysight InfiniiVision X 系列便携式示波器。便携式示波器的优点是轻便易携带,可快速打开和关闭,易于使用。它们的性能通常不如大型示波器全面,但 Keysight InfiniiVision 2000 和 3000 X 系列扭转了这一劣势。它们不仅具备便携式示波器的便携性与易用性,还拥有足够强大的功能,能够应对目前大多数的调试需求(带宽高达 6 GHz)。图 14.Keysight InfiniiVision 2000 X 系列便携式示波器示波器的类型经济型示波器经济型示波器的价位适中,但其性能逊于高性能示波器。这类示波器常用于大学的实验室中,主要优势就是低价位。您可以适中的价格买到非常实用的示波器。高性能示波器高性能示波器可提供最佳的性能。当用户需要高带宽、快速采样率和更新速率、较大存储器深度以及广泛的测量功能时,通常会选择这种示波器。图 15 显示了 Keysight Infiniium 90000A 系列高性能示波器。图 15.Keysight Infiniium 90000A 系列示波器高性能示波器的主要优势是支持您适当地分析各种信号,提供多种应用软件和工具,使分析现有技术变得简单而快速。它的劣势主要是在它的价格和体积上。示波器的使用范围凡是需要测试或应用电子信号的公司几乎都会用到示波器。因此,示波器的应用范围极为广泛:– 汽车技术人员通过示波器来诊断汽车的电气问题。– 大学实验室使用示波器向学生教授电子知识。– 全球各地的研究组都拥有示波器。– 手机制造商使用示波器来测试信号的完整性。– 军事和航空航天行业使用示波器来测试雷达通信系统。– 研发工程师使用示波器来测试和设计新的技术。– 示波器也可用于一致性测试。例如,用于确保 USB 和 HDMI 的输出符合某些标准。示波器的用途十分广泛,以上只是其中的几种。它的确是一种功能强大的通用仪器。基本的示波器控制与测量基本的前面板控制通常,您必须使用前面板上的旋钮和按键来操作示波器。除了前面板上提供的控制机构以外,许多高端示波器现在还配有操作系统,因此可以像计算机一样来操作。您可以为示波器连接鼠标和键盘,并使用鼠标通过显示屏上的下拉式菜单和按键来调整控制。此外,有些示波器还配有触摸屏,只需通过触笔或指尖就能访问菜单。开始之前 ...当您第一次使用示波器时,请先检查您要使用的输入通道是否已经打开。然后找到并按下 [Default Settings],使示波器恢复到默认状态。接着再按下 [Autoscale] 键,自动设定垂直和水平刻度,以便在显示屏上完美地呈现波形。以此作为起点,然后再做些必要的调整。如果您无法追踪到波形或在显示波形方面出现困难,请重复以上步骤。大部分示波器的前面板都至少包括四个主要区域:垂直和水平控制,触发控制以及输入控制。垂直控制示波器的垂直控制结构通常集中在一个标示为 Vertical 的区域内,这些控制结构可以让您调整显示屏的垂直刻度。例如,其中有一个控制机构可以指定显示屏网格的 y 轴上的每格(刻度)电压。您可以通过降低每格电压来放大显示波形,或提高每格电压来缩小显示波形。另外还有一个控制机构可以调整波形的垂直偏移,它可以让整个波形在显示屏上往上或往下平移。图 16 是Keysight InfiniiVision 2000 X 系列示波器的垂直控制区域。图 16. Keysight InfiniiVision 2000 X 系列示波器前面板上的垂直控制区域水平控制 示波器的水平控制机构通常集中在前面板上标示为 Horizontal 的区域。这些控制机构可以让您调整显示屏的水平刻度。其中有一个控制机构可以指定 x 轴的每格时间。同样,只要减少每格时间,您就可以放大显示较窄时间范围内的波形。另外还有一个控制机构可调整水平延迟(偏置),它可以让您扫描一个时间范围。图 17 是Keysight InfiniiVision 2000 X 系列示波器的水平控制区域。图 17. Keysight InfiniiVision 2000 X 系列示波器前面板上的水平控制区域触发控制 如前所述,在您的信号上进行触发有助于显示一个稳定、可用的波形,并使您可以查看感兴趣的波形部分。触发控制可使您选择垂直触发电平(例如您希望示波器触发时所在的电压)和不同的触发功能。常见的触发类型包括:边沿触发边沿触发是最常见的一种触发模式。当电压越过某个阈值时,触发就会发生。您可以选择在上升沿或下降沿触发。图 18 是在上升沿触发的图形显示。图 18. 当您在上升沿进行触发时,只要达到阈值,示波器就会进行触发毛刺触发在毛刺触发模式下,当事件或脉冲宽度大于或小于指定的时间长度时就会进行触发。这项功能对于发现随机毛刺或错误非常有用。如果这些毛刺不常出现,可能会很难看到,但只要使用毛刺触发您就可以捕获到许多这类错误。图 19 是Keysight InfiniiVision 6000 系列示波器捕获到的一个毛刺。图 19. Keysight InfiniiVision 6000 系列示波器捕获到的一个偶发毛刺。脉冲宽度触发当您寻找特定脉冲宽度时,脉冲宽度触发与毛刺触发类似。但这项触发功能更普遍,因为您可以在任何指定宽度的脉冲上触发,并可选择想要在脉冲的哪个极性(负或正)上触发。您也可以设定触发的水平位置,以观察触发前后所发生的事。例如,您可以执行毛刺触发来找出错误,然后查看触发前的信号以了解造成毛刺的原因。如果将水平延迟设置为 0,则触发事件将会以水平方向出现在屏幕中间。在触发之前发生的事件会出现在屏幕的左边,在触发之后立即发生的事件会出现在右边。您也可以设置触发耦合,以及想要触发的输入信号源。您不一定非得在您的信号上触发,而是还可以在相关的信号上触发。图 20 是示波器前面板的触发控制区域。图 20. Keysight InfiniiVision 2000 X 系列示波器前面板上的触发控制区域输入控制示波器通常提供 2 或 4 个模拟通道。这些通道会加以编号,而且每个通道通常会对应一个相关的按键,供您打开或关闭通道。另外,您也可以选择指定的交流或直流耦合。如果选择直流耦合,则输入整个信号。反之,交流耦合会阻隔直流分量,并将波形的中心设在大约 0 V(接地)。此外,您还可以通过选择键为每个通道指定探头阻抗。您也可以通过输入控制机构选择采样类型。信号的采样有两种基本的方法: 实时采样实时采样会对波形进行频繁的采样,因此在每次采集时都能捕获到完整的波形图像。借助实时采样功能,当前的一些高性能示波器能够单次捕获高达 33-GHz 带宽的信号。等效时间采样等效时间采样必须历经多次采集才能建立波形。它会在第一次采集时采样信号的某个部分,在第二次采集时采样另一部分,依此类推。随后它会将所有的信息结合在一起以重建波形。等效时间采样适用于高频信号,这些信号对实时采样来说速度太快(>33 GHz)。功能键您可以在未配备 Windows 操作系统的示波器上找到一些功能键(如图 8 所示),利用这些功能键来访问示波器显示屏上的菜单系统。图 21 列举了按下功能键时弹出的一种快捷菜单。该菜单用于选择触发模式。您可以连续按动多功能键以切换不同的选项,或者利用前面板上的旋钮转到您想要的选项。图 21. 在触发菜单下,按下功能键时出现的 Trigger Type(触发类型)菜单。示波器的使用数字示波器可以支持您执行广泛的波形测量,测量的复杂程度和范围取决于示波器的功能组合。图 22 是Keysight 8000 系列示波器的空白屏面。请注意,在屏幕的最左边有一排测量按键 / 图标,使用鼠标将这些图标拖曳到波形上,示波器便可计算出测量结果。这些图标非常直观地显示了可以执行哪一种测量计算,因此用起来非常方便。图 22. Keysight 示波器的空白屏面许多示波器都会提供以下的基本测量:峰峰值电压测量这项测量可以计算单个波形周期内的高低电压之间的电压差。图 23. 峰峰值电压电压有效值(RMS 电压)测量这项测量计算波形的 RMS 电压,该值可进一步用来计算功率。图 24. 上升时间示例(显示峰峰值电压从 0% 到 100% 所需的时间,而不是通常设置的 10% 到 90%)上升时间 - 这项测量旨在计算信号从低电压上升到高电压所花的时间。通常是计算波形从峰峰值电压的 10% 变到 90% 所用的时间。上升时间是上限阈值上的时间减去您正在测量的边缘的下阈值上的时间。下降时间相似,即下阈值上的时间减去您正在测量的边缘的上限阈值上的时间。一旦您已采集到信号并将其显示在示波器上,下一步通常是在波形上进行测量。示波器现在具备极其丰富内置测量功能,使您能迅速分析波形。这些基本测量的范例包括:脉宽测量脉宽是从第一个上升沿的中间阈值到下一个下降沿的中间阈值的时间。在进行正脉宽测量时,计算脉冲宽度的方法是,计算波形从峰峰值电压的 50% 上升到最大电压再回落到 50% 所需的时间。负脉宽测量则是计算波形从峰峰值电压的 50% 降到最小电压再回到 50% 所需的时间。幅度和其它电压测量这是波形显示幅度的测量。通常您也可测量峰峰值电压、最大电压、最低电压以及平均电压。周期 / 频率:周期定义为中间阈值两次连续交叉点电压之间的时间。频率定义为 1/周期。以上是许多示波器都会提供的测量项目,但大多数示波器所能执行的测量并不仅限于此。示波器基本运算功能除了前面讨论的测量功能以外,您还可以针对您的波形执行许多数学运算,包括:包括:傅立叶变换 - 通过傅立叶变换可以可知道信号由哪些频率组成。绝对值 - 此项运算功能可以帮助显示波形的绝对值(以电压值表示)。积分 - 这个功能可以计算波形的积分。加减运算 - 您可以利用加减运算将多个波形相加或相减,并示出运算结果所产生的信号。再次强调,以上只是示波器所提供的一小部分测量与运算功能。重要的示波器性能特性示波器的许多特性都会明显影响仪器的性能,进而决定您对设备做出准确测试的能力。本节介绍这些最基本的特性,也会帮助您熟悉示波器的术语,并说明如何明智地挑选最符合您需求的示波器。示波器带宽带宽是示波器的一项最重要特性,因为它表示了示波器在频域内的具体范围。换言之,带宽决定了您能够准确显示与测试的信号范围(以频率表示)。带宽以赫兹为测量单位。没有足够的带宽,您的示波器将无法准确再现真实的信号。例如,您可能会发现信号的幅度是错的、信号边沿并不稳定或有波形细节丢失。示波器带宽是指将信号衰减 3 dB 时的最低频率。我们也可以从另外一个角度来解释带宽:如果您在示波器中输入一个纯正弦波,当显示的幅度达到真实信号幅度的 70.7% 时的最小频率即为带宽。有关示波器带宽的详细信息,请参见应用指南《为您的应用评测示波器带宽》。示波器通道通道是指示波器的独立输入。示波器通道的数量介于 2 到 20 个之间,通常是 2 或 4 个。通道所传送的信号类型也不尽相同。有些示波器只具有模拟通道(这些仪器称为 DSO――数字信号示波器),另一些示波器同时具有模拟通道和数字通道,称为混合信号示波器(MSO)。例如, Keysight InfiniiVision 系列 MSO 提供 20 个通道,其中 16 个是数字通道,4 个是模拟通道。请确保有足够的通道供应用使用。如果您只有两个通道,但必须同时显示 4 个信号,显然会出问题。图 25. Keysight MSO 2000 系列示波器上的模拟和数字通道示波器采样率示波器的采样率是指每秒可采集的样本数量。建议您选择采样率至少比带宽大 2.5 倍的示波器,但采样率最好为带宽的 3 倍以上。在评估示波器制造商所宣传的采样率技术指标时必须要谨慎,厂商通常会列出示波器可达到的最大采样率,但这样的采样率通常只有在使用一个通道的情况下才能达到。如果同时使用多个通道,采样率就会下降。因此,请确认在使用多少个通道的情况下,仍可维持厂商所声称的最大采样率。如果示波器的采样率太低,您在示波器上所看到的信号可能不是很精确。例如,假设您想查看一个波形,但示波器的采样率每个周期只能产生两个数据点(图 26)。图 26. 采样率每个周期产生 2 个数据点的波形现在假设是相同的波形,但是采样率提高为每个周期采样 7 次(图 27)。图 27. 采样率每个周期产生 7 个数据点的波形显然每秒采集的样本越多,显示的波形就越清晰、准确。如果针对以上的例子持续提高波形的采样率,则采样数据点最终看起来几乎是连续的。事实上,示波器会使用 sin(x)/x 内插法来填满采样数据点之间的空间。有关示波器采样率的更多信息,请参见应用指南《评测示波器采样率与采样保真度的关系 -- 如何进行最精确的数字测量》。示波器存储深度如前所述,数字示波器使用 A/D(模拟 /数字)转换器对输入的波形进行数字转换,经数字转换的数据会存储到示波器的高速存储器中。存储深度是指可以存储的采样或数据点的数量,也就是可以存储数据的时间长度。存储深度在示波器的采样率方面扮演着相当重要的角色。在理想条件下,不论示波器如何设置,采样率都应维持不变。但这样的示波器在很大的每格时间(时间 / 格)设置下需要相当大存储器,而其售价将会超出许多客户所能负担的范围。实际上,只要增加时间范围,采样率便会下降。存储器深度至关重要,因为示波器的存储器深度越大,您以全采样速率来采集波形的时间就越久。我们可以用数学算式来表示:存储器深度 =(采样率)(显示屏的时间设置范围)因此,如果想在较长的时间范围内显示高分辨率数据点,那么就需要使用深存储器。确认示波器在最深的存储器深度设置时的性能也很重要。在此模式下示波器的性能通常会急剧下降,因此许多工程师只有在必要的时候才会使用深存储器。有关设备存储器深度的更多信息,请参见应用指南 Demystifying Deep Memory Oscilloscopes。波形捕获率捕获率是指示波器采集和更新波形显示的速率。虽然肉眼上看上去好像示波器正在显示“作用中”的波形,但那是因为更新的速度太快,以致肉眼无法察觉到变化。事实上,每次波形采集之间都会出现一段静寂时间(也称死区时间)(见图 28),此时波形的某个部分并不会显示在示波器上。因此,如果在这段时间出现一些偶发事件或毛刺,您是不会看见的。显而易见,快速的捕获率非常重要。捕获率越快,意味着死区时间越短,可捕获到偶发事件或毛刺的机率就越高。例如,您正在显示的信号中,如果每 50,000 个周期出现一次毛刺,而您的示波器的捕获率是每秒 100,000 个波形,那么平均每秒可以有两次捕获到这个毛刺。但如果示波器的捕获率是每秒 800 个波形,那么平均要花一分钟才能捕获到这个毛刺。这将必须等待较长的时间。在比较不同示波器的更新速率技术指标时必须要小心。有些制造商在广告中所声称的更新速率,其实必须是在特殊的采集模式下才能达到。这些采集模式可能会严重限制示波器的性能,例如存储深度、采样率和波形的重建因此,最好能确认示波器在最大更新速率下显示波形时的性能。示波器连通性 示波器提供了多种连通功能。有些示波器会配备 USB 端口、DVD-RW 光驱、外置硬盘和外部显示器端口等。以上所有的特性都可以帮助您更容易地使用示波器和传输数据。有些示波器还会配备操作系统,让您的示波器像个人计算机一样运行。在连接了外部显示器、鼠标和键盘后,您就可以像把示波器嵌入到电脑中一样来查看示波器的显示画面和进行控制操作。在许多情况下,您也可以通过 USB 或 LAN 连接,将数据从示波器传送到 PC。良好的连通性特性可节省大量宝贵的时间,协助您更轻松地完成工作。例如,您可以迅速而完整地将数据传送到笔记本电脑,或与不同地点的同事分享数据。您也可以通过 PC 对示波器进行远程控制。在很多情况下,用户都需要高效地传输数据,因此购买具备出色连通特性的示波器才是明智的投资。图 28. 静寂时间(死区时间)示意图圆圈指出的偶发事件将不显示示波器探头示波器决定着显示信号和分析信号的准确程度,而用来连接示波器与被测件(DUT)的探头则与信号完整性息息相关。如果您使用的是 1 GHz 的示波器,但探头却只支持 500 MHz 的带宽,那么您将无法充分利用示波器的带宽。本节讨论探头的类型及每种探头所适合的应用。负载没有任何一个探头可以完美地复制您的信号,因为当您把探头连接到电路上时,探头就会变成该电路的一部分。电路中的部分电能会流经探头,我们称之为负载。负载共有三种:电阻、电容和电感。电阻负载电阻负载会造成显示的信号出现错误的幅度,也可能在连接探头时导致故障的电路开始发生作用。探头的电阻最好比信号源电阻大 10 倍以上,以便使幅度降低到 10% 以下。电容负载电容负载会导致上升时间变慢,并使带宽变小。为了减少电容负载,探头的带宽至少应是信号带宽的 5 倍。电感负载电感负载在您的信号中会以振铃形式出现。它是由探头接地导线的电感效应引起的,因此请尽可能选用最短的导线。 无源探头无源探头只包含无源器件,不需要使用电源便可运行。这类探头在探测带宽小于 600 MHz 的信号时很有用,一旦超过这个频率,就需使用另一种探头(有源探头)。无源探头通常价格较低,且兼具易于使用和坚固耐用的特性。它是一种精确的多功能探头。无源探头的种类包括低阻分压探头、补偿探头、高阻分压探头及高电压探头。无源探头通常会产生高电容负载和低电阻负载。图 29. 无源探头有源探头使用有源探头时,必须通过电源对探头内部的有源器件供电。有时,探头会通过 USB 电缆连接、外部机箱或示波器主机供电。这类探头使用有源器件来放大或调整信号。有源探头可支持更高的信号带宽,因此很适合高性能的应用。有源探头的价格要比无源探头高出许多,不但耐用性差,探针也比较重。但这类探头可以提供最佳的电阻和电容负载组合,并可让您测试更高频率的信号。Keysight InfiniiMax 系列探头属于高性能探头。它们在探针中使用一个阻尼电阻器,可以大幅减少负载效应。此外,它们也提供非常高的带宽。图 30. 有源探头电流探头电流探头可用来测量流经电路的电流,它们通常体积较大,且带宽有限(100 MHz)。探头附件与探头相配套的还有各种不同类型的探针,从可以包裹缆线的粗大型探针,到细如发丝的纤细型的探针应有尽有。有了这些探针,您就可以更轻松地接触测试电路或被测件的各个部分。图 31. 电流探头结论在当今的科技领域中,示波器是一种功能强大的工具。它们适用于非常广泛的应用,并且较之于其他的测试与测量工具拥有许多优点。阅读了本应用指南之后,您应该已对示波器原理有了较为清晰的认识。如能再接再厉,阅读一些更高级的专题文章,相信您在以后使用示波器时会更加得心应手。有关是德科技示波器的更多信息,请访问示波器编辑于 2024-01-22 19:49・IP 属地马来西亚示波器仪器仪表是德科技(中国)有限公司Keysight赞同 1676 条评论分享喜欢收藏申请转载文章被以下专栏收录示波器使用方法介绍是德科技(原安捷伦)示波器的使用方法和步骤示波器基
示波器基本原理 - 知乎
示波器基本原理 - 知乎切换模式写文章登录/注册示波器基本原理泰勤科技致力于测试测量领域的综合服务商简单介绍了示波器的基本原理, 让您了解什么是示波器, 以及如何操作示波器。我们将会探讨示波器的应用, 并概括介绍基本的测量和性能特征。我们还将介绍不同类型的探头, 并讨论它们的优缺点。序言电子技术在我们的生活中无所不在。每天都有上百万人使用电子产品,例如手机、电视机和计算机。随着电子技术的进步,这些产品的工作速度也变得越来越快。如今,大多数电子产品都采用了高速数字技术。工程师需要可以精确设计和测试他们在高速数字产品中所使用的元器件的能力。他们在设计和测试元器件时所使用的仪器必须特别适合处理高速和高频的特性才行,而示波器正好是这样的一种仪器。示波器是一种功能强大的工具, 在设计和测试电子器件方面很有用。它们在您判定系统器件是否正常方面扮演极为重要的角色,而且还能帮助您确定新设计的元器件是否按照预想的方式进行工作。示波器的功能远比万用表更强大,因为它们可以让您观察电子信号的实际情况。示波器的使用范围非常广泛,从汽车业到大学的研究实验室以及航空航天/ 国防产业等。许多公司都依赖示波器来发现瑕疵,以便制造出质量合格的产品。示波器在满足客户对更新颖和更优质的电子产品的需求方面,是绝对不可或缺的工具。示波器的主要用途在于显示电子信号。通过观察示波器上显示的信号,您可以确定电子系统的某个元器件是否在正常工作。因此,要想了解示波器的工作方式,必须先要了解信号的基本原理。波形的特性电子信号会以波形或脉冲的形式出现。波形的基本特性包括:幅度、相移、周期、频率。幅度在工程应用中经常使用的幅度定义主要有两个。第一种通常称为峰峰值(peak amplitude),其定义为波动信号的最大偏移量。第二种是均方根(RMS) 幅度。要计算波形的有效值电压,必须将波形值平方并求出平均值,然后再求平方根。对正弦波来说,RMS幅度等于峰值幅度的 0.707 倍。图 1. 正弦波的峰峰值和有效值图 2. 三角波的周期相移相移是指两个其他条件都相同的波形之间的水平位移量,以度或弧度为单位。就正弦波来说,一个周期以360 度来表示。因此,如果两个正弦波相差半个周期,那么它们的相对相移就是 180 度。周期波形的周期是指波形重复出现一次所花费的时间,以秒为单位。频率每个周期性波形都有一个频率。频率是指波形在一秒内重复出现的次数(如果您使用Hz 为单位)。频率与周期互为倒数。波形波形是指波的形状或图形再现(representation)。波形可以提供许多有关信号的信息,举例来说,它可以透露出电压是否突然改变,呈线性变化或保持不变。标准的波形有很多种, 本节只会介绍您最常碰到的几种。正弦波正弦波通常与交流 (AC) 电源有关,例如您屋内的电源插座。正弦波的峰值幅度并非永远固定,如果峰值幅度会随着时间不断地下降,我们就称这种波形为阻尼正弦波 (damped sine wave)。方波/ 矩形波方波(square wave) 会在两个不同的值之间周期性地跳动,而且在高电平和低电平部分的时间长度会相等。矩形波(rectangular wave) 与方波不同的地方在于高、低值部分的时间长度并不相等。图 3. 正弦波图 4. 方波三角波/ 锯齿波在三角波中,电压会随着时间呈线性变化。它的信号边沿称为斜波, 因为波形不是斜升就是斜降到某个电压。锯齿波(sawtoothwave) 看起来跟三角波很像,因为它的前沿或后沿的信号沿会随着时间产生线性的电压响应,但相反方向的边沿几乎是立即下降的。脉冲脉冲是指固定电压中突然出现的波动,就像在一个房间中突然打开电灯,然后迅速熄灭电灯的情形。一连串的脉冲称为脉冲串(pulsetrain),延续前面的比喻,这就好比不断重复快速开灯与关灯的动作一样。脉冲是信号中常见的毛刺或错误波形。那么脉冲也可以是一个只带有一个信息的信号波形。复合波波形也可以是以上各种波形的混合。它们不一定要具备周期性,而且可以是非常复杂的波形。模拟信号与数字信号的比较模拟信号可以代表某个范围内的任何值。您不妨想象一下模拟时钟, 时针每12个小时旋转一周,在这段期间内时针会持续移动,并不会出现读值跳动或不连续的情形。现在将它与数字时钟比较一下。数字时钟只会显示小时和分钟,因此是以分钟作为间隔时间,它会一下子突然从 11:54 跳到 11:55。图 5. 三角波数字信号同样具备非连续与量化的特性。通常,非连续信号会有两个可能的值(高或低,1 或0 等),因此信号会在这两个可能的值之间来回跳动。图 6. 锯齿波图 7. 脉冲什么是示波器, 您为什么需要它?信号完整性示波器主要的用途在于准确地再现电信号,因此信号完整性显得非常重要。信号完整性是指示波器重建波形准确再现原始信号的能力。信号完整性很低的示波器是没有价值的,因为当示波器显示的波形形状或特性与真正的信号相差较远时进行测试便毫无意义。但是,不论示波器的品质有多好也无法完全再现真正的信号。这是因为当您将示波器连接到电路时,示波器就会变成电路的一部分。换言之会有一些负载效应产生。仪器制造商虽然很努力要将负载效应减到最小,但就某种程度而言它们一直都存在。示波器的外观一般来说,最新型数字示波器的外观与图 8 中的示波器相似。然而示波器的种类繁多,您的示波器看起来或许与之截然不同。尽管如此,大部分的示波器都具有一些基本的特性。大多数示波器的前面板大致可以分成信号的水平轴 (通常代表时间) 和垂直轴(代表电压)。触发控制区域使您可以设置示波器在何种条件下让时基开始进行扫描。示波器的后面板如图 9 所示。如您所见,许多示波器都具备个人计算机的连通性特性,包括CD- ROM 驱动器、CD-RW 驱动器、DVD- RW 驱动器、USB 端口、串口,以及外接式监视器、鼠标与键盘输入等。几个区域: 通道输入、显示屏、水平控制、垂直控制以及触发控制。如果您的示波器未配备Microsoft® Windows® 操作系统,那么很可能会提供一组功能键,用于控制屏幕上的菜单。您可以通过通道输入接口 (即探头插入的连接器),把信号传到示波器上。显示屏是用来显示这些信号的屏幕。水平与垂直控制区域包含了一些旋钮与按键,可用来控制显示屏上的显示屏 水平控制区域图 8. Agilent InfiniiVision 5000 系列示波器的前面板图 9. Agilent Infiniium 8000系列示波器的后面板示波器的用途示波器是一种测量与测试仪器, 可以显示某个变量与另一个变量之间的函数关系。例如,它可以在显示屏上绘制一个电压 (y 轴) — 时间 (x 轴) 图。图10 便是这类图的一个例子。如果您想测试某个电子器件是否在正常工作,这项功能会很有用。如果您知道移除器件之后应该会出现何种信号波形,就可以使用示波器来查看器件是否真地输出正确的信号。请注意,x 和y 轴会以网格线划成一些格子。您可以利用这些网格线来进行手动测量,但最新的示波器都能自动执行大部分的测量。示波器的功用不只是绘制电压 — 时间图。示波器提供多个称为通道的输入,每个通道都可以独立工作。因此,您可以将通道 1 连接到某个器件,将通道2 连接到另一个器件。如此示波器便能绘出通道 1 测得的电压与通道 2测得的电压之间的比较图。此模式称为示波器的XY 模式,它在绘制I-V 图或Lissajous 图时很有用。从Lissajous 图的形状可以得知两个信号之间的相位差与频率比。图 11 为Lissajous 图及它们所代表的相位差和频率比。图 10. 示波器显示的方波的电压 — 时间图图 11. Lissajous 图示波器的类型模拟示波器最早出现的是模拟示波器,它使用阴极射线管来显示波形。电子束在选通打开和关闭时沿着水平线方向扫描。屏幕上涂有萤光物质,只要被电子束击中就会发光。当连续的萤光点亮起时,您便可以看到信号的再现图形。为了让示波器稳定地显示波形, 必须使用触发。当显示屏上的整个波形轨迹线完成时,示波器会等到特定的事件发生(例如上升沿超过某个电压值)后才再次开始显示迹线。未经触发的显示画面是没有用处的,因为显示的波形并不稳定(对于下面将会讨论的DSO 和MSO 示波器来说同样如此)。模拟示波器非常实用,因为萤光点会继续发光一段时间而不会马上消失。您可以从几个彼此重迭的示波器轨迹线上看到信号的毛刺或不规则性。由于当电子束击中屏幕时波形便会显示,所以显示信号的亮度与实际信号的强度有关。这使得显示屏就像一个 3D 图一样(换言之,x 轴代表时间,y轴代表电压,而z轴则代表强度)。模拟示波器的缺点是显示画面无法固定不动,好让波形停留较长的时间。当萤光物质不再发光,该部分的信号也会跟着消失。另外,您也无法自动执行波形测量,而必须使用显示屏上的网格线以手动方式来进行测量。模拟示波器可以显示的信号类型也很有限,因为电子束执行水平扫描和垂直扫描的速度存在上限。虽然目前还有很多人在使用模拟示波器,但这类产品在市场上的销量大不如前, 反之数字示波器成了广受欢迎的最新工具。数字存储示波器 (DSO)数字存储示波器(通常称为DSO) 是为了弥补模拟示波器的许多缺点而发明的。DSO的输入信号必须利用模拟数字转换器来进行模数转换。图12 是安捷伦数字示波器所采用的一种DSO 体系结构。衰减器会调整波形。垂直放大器会做进一步的调整,然后把波形传到模拟/ 数字转换器 (ADC)。ADC 会对收到的信号进行采样和数字转换,然后将数据储存到存储器中。触发器会寻找触发事件,而时基会调整示波器的时间显示。当微处理器系统按照您的指定对信号进行后期处理之后,信号便会在示波器上显示。以数字方式表示数据,可让示波器执行各种波形测量。信号可以无限期地存放在存储器中,也可以打印出来或通过闪存、LAN或DVD-RW光盘传送到计算机上。事实上,您现在还可以通过软件提供的虚拟前面板从计算机上来控制与监测示波器。图 12. 数字示波器的体系结构混合信号示波器 (MSO)DSO 的输入信号属于模拟信号, 模拟数字转换器可以将其转换为数字信号。随着数字电子技术的蓬勃发展,同时监测模拟与数字信号的必要性愈来愈高。鉴于此,示波器厂商开始生产能够触发和显示模拟与数字信号的混合信号示波器。这类仪器通常会提供少数几个模拟通道 (2 或 4 个) 及较多的数字通道(参见图 13)。MSO 混合信号示波器的优点是可以在模拟与数字信号组合上进行触发,并显示以相同时基进行关联的所有这些信号。便携式/ 手持式示波器顾名思义,便携式/ 手持式示波器是指一种体积足够小,能够随身携带的示波器。如果您需要在许多不同的地点或实验室中的不同工作台之间搬动示波器,那么便携式示波器最适合您使用。图 14 是Agilent InfiniiVision 5000 系列示波器。图 13. 混合信号示波器的前面板输入提供了 4 个模拟通道和 16 个数字通道便携式示波器的优点是轻便易携,可以快速打开和关闭,而且很容易使用。它们的性能通常比不上大型示波器,但Agilent InfiniiVision 5000、6000 和 7000 系列改变了这个事实。这些示波器具有便携式示波器常见的便携性和易用性,但同时功能也足够强大,可以满足您所有的调试需求。图 14. Agilent InfiniiVision 5000 系列便携式示波器经济型示波器经济型示波器的价格适中,但性能比不上高性能示波器。这些示波器通常可在大学的实验室里看到,其主要优点就是价格较低。您可以用相当适中的价格,买到非常实用的示波器。广东泰测电子有限公司(简称:广东泰测)成立于2021年,是深圳市泰勤科技有限公司的子公司,公司立身于测试测量仪器行、工业与制造行业,与多家国内外业界著名仪器厂商有着长远而稳固的战略合作关系,公司成立至今,紧跟世界工业与制造业发展趋势,为广大的客户提供了多元化的服务,产品用于研发、生产、测试、检测、高校实验室等,涉及领域有: 5G、人工智能、新基建、智能制造、智慧城市、光伏、新能源、电源、电池、半导体、储能等引领未来科技的新行业,在多个领域提供了具有竞争力的综合性测试服务和解决方案,满足客户各类需求。主营:数字示波器、探头、交直流电源、交直流电子负载、万用表、数据采集器、功率分析仪、信号发生器、热像仪、示波记录仪、安规测试仪等产品代理品牌:RIGOL普源精电,ITECH艾德克斯,CYBERTK知用电子,EEC华仪,FLUKE福禄克,KHC北京科环,Tektronix泰克,KEITHLEY吉时利,KEYSIGHT是德科技,HIOKL日置等品牌厂家编辑于 2022-04-15 14:25数字系统设计电路仿真示波器赞同 1添加评论分享喜欢收藏申请-1.5
%����
1 0 obj
<>
endobj
2 0 obj
<>
endobj
3 0 obj
<>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 521.64 737.16] /Contents 5 0 R/Group<>/Tabs/S>>
endobj
4 0 obj
<>
endobj
5 0 obj
<>
stream
x��}M�e7r�^@��\� (�d� A@eVU�3,`�Y ���p�b���9'x�{-�R�T�݀U����wo��O��O�?�+ϻϧ��J��� ����7 ���u�����י��N^���rN?�.NX� ����O���=[�
�#��@����p��A����F@K@m�pHeo�h�* �T�v�y��up�u/���8S���qP�7�ns�qAc�Mj�D��G ���H�NE����dJ��1BL����)�"�>P��+��s�sLjn*�I�Ng���]
���pk<��Hz>�gQ������s� =�R}�&7�d�"���ID�]j'<�QL���3pR��h\�6:��1��z����E����n�1�<���#Q��J�����
#��2�}�DD�}"<�CC�N9O`b�hP����٨/���c����Դ�)�4h@�Ή�'�j����X+`hG���t
��*�R��b@��r�Ii���3@$�d�N\���Ժ ��4l=�H����4��Q��p��\q������3�")��*@xg�w2����^�\��&�C��^����NZ@��#&FUDi�%��`�Ic�WB�V(w� ː��0��"�L��i?�x~���y t����]&�f0ֵ�X��M+��AO��h�4L=���9�+�r����Aܞ������Q���I+hἆd@�L�6.j%�,�;^7�2c�� `�1@���:��pR�{���9O��_����Y5x p���"���2��j�/�0��Ph�f�N
�S��k3EsoDH�6iC q'�H9~Q���P� �ɢ�����F|<q�Ίɍ��@��` *���PT�@fg�M�&�z� ݡ| �\���<B�Q�&0N�z��a�-> ��� bY��W ��s��n˸%"���1�N� �z6�5���g�m�צ�vm�)���'�}�$D�� E:��fp��_d��6-^� H�F���v���qE�M]��̔@�c+�0�'�3�8e���,L�#�4��˔��/T�f�D� L5����6�]0�×� �����1 ��7�ٵ�}&�r"��텙��@opeh��$ Y�e�du 3sh�b�dV�I;)Q촒�rN��0�����E��d�7}{@�d���0~@t
c��������L$�Nd�4'艀Ȭ�8�Ó /#���_��u��VNl�y���u�;��NB� �cM���5�/!�Ъ�NMm�4�[5� �oy��#����Y���c�-���.ٰЦ&'L�����O���J�ɶ`e��Q��4���ao�)S�6�&'o��LbT�'��`��p{nqt@���̂\�e@���Sh����T�R8���`���N���88���U�/1����qr��lo.����^ f_�XgYO��On�+S�� s�YX=;/�u����[3����-Og�G�5�א.ͦ�ZJ��1\J{���!3 j���J�2����@����������:�B�ۛ�>�� �6���*��YY\)L��z*s[��t;��L�uʵ��R�dkn!�WM+"y���;��wmS�C"�Ĺ�������~�)�i�9[�i�\*��Y\��Ts��q �� �Zk)H����� �3�����ܔ@3Od�*�u��q^��դ*���G� o�Q�4��H©GLT9�Y����UJ����^�����U��AaU��o.1�HU�c�%F� V�y&���M��m�r��_�2���6S!�fE1 ij�{an�0��9'�2�X��O�
���Q����u�Gj
Q0N-�M�U�˄9]+�B�<��+� ]UO�3s�����&[���)�G�\/7,�.'�l'� q5�\��]��k�Vu�pn��@3�3Y#�ˀK���[�ebS�
�&lB�vg�����NB�B�9�b�t�OY_�2A2>�d�!��]W� QR��xP*0��"������̅kRV�� �����zp]����+qM!�{Y��<^���H��Я*����j,�q� �*7�(i����dL��p��`T���a��_5B5k�̢M S�* �(���G���Xk+�X ���7J�R�М�W��I]%�ęĖ�8.e-�ԪB595� 5e����Q�Q���v�|4��� =xܙr��t*�Gt�
\l�ْtW�HZQ�I���H�V� �R����j�TF�R�����.�Ve�Y&0@�lJ)S�����b �Ѥ��D1%'��\� ��⸡��U��Z��;�_��E[B��p�!J���*��]&QBY����(�o����K )�*��3N��2�jĊ�)S���m�*�l� ��SI�&�!~���4���XK(t���AM��й�1�.EPH[��{�!,u��ú�?P%���XTR�����t���wKKˁ�ng�hb�B�Hx*A�GpF<���~�.�o�S��6�T<���4l�� 3V��T�I`H�տ��D�-�K���4e�r2"ѩí�� :L5,�^2H�"�5qvY;ɴ�Q��&͔�m�c�V[�;��2�����<���c�5��2̬BU��j)@�4g��1�r�,Y�1��J�^/�a2�Ur��l�6������`�B��Km�!%t)���-�$���W�� �b��@���/q4�L���zU�����n�9W��R�%��ɇ�-��ԹT2z�^�7�FJ����������;_=����|��Im���t�"ml{g��Jeؙ��\�'0�`���&