imtoken官方APP下载|quantum
QUANTUM中文(简体)翻译:剑桥词典
QUANTUM中文(简体)翻译:剑桥词典
词典
翻译
语法
同义词词典
+Plus
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录
/
注册
中文 (简体)
查找
查找
英语-中文(简体)
quantum 在英语-中文(简体)词典中的翻译
quantumnoun [ C ]
physics
specialized uk
Your browser doesn't support HTML5 audio
/ˈkwɒn.təm/ us
Your browser doesn't support HTML5 audio
/ˈkwɑːn.t̬əm/ plural quanta
Add to word list
Add to word list
the smallest amount or unit of something, especially energy
量子
quantum theory
量子理论
(quantum在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)
quantum的例句
quantum
However, according to quantum theory, the acquisition of quantum information is difficult since quantum measurement destroys the quantum state of a system.
来自 Cambridge English Corpus
The most distinctive feature of quantum theory - the interference of probabilities - is thus expressed equally well in position space and momentum space.
来自 Cambridge English Corpus
The problem is to reach the extremely high densities required for the electron quantum degeneracy.
来自 Cambridge English Corpus
In quantum mechanics, unitary transformations represent reversible evolutions of a system.
来自 Cambridge English Corpus
The development of quantum walks in the context of quantum computation, as generalisations of random walk techniques, has led rapidly to several new quantum algorithms.
来自 Cambridge English Corpus
It is a conceptual error to think that quantum mechanics can be understood just using probabilistic constructs.
来自 Cambridge English Corpus
The dispersion relation for a quantum pair plasma is derived, by using a wave kinetic description.
来自 Cambridge English Corpus
It is uncertain, however, whether ' quantum evolution ', and punctuated equilibrium in the transition zone are important.
来自 Cambridge English Corpus
示例中的观点不代表剑桥词典编辑、剑桥大学出版社和其许可证颁发者的观点。
C1
quantum的翻译
中文(繁体)
量子…
查看更多内容
西班牙语
cuanto, cuantio, cantidad…
查看更多内容
葡萄牙语
quantum…
查看更多内容
更多语言
法语
土耳其语
in Dutch
捷克语
丹麦语
印尼语
泰语
越南语
波兰语
in Swedish
马来语
德语
挪威语
in Ukrainian
quantum…
查看更多内容
kuantum…
查看更多内容
quant…
查看更多内容
kvantum…
查看更多内容
kvant…
查看更多内容
kuantum…
查看更多内容
หน่วยเล็กสุด, ควอนตัม…
查看更多内容
lượng tử…
查看更多内容
kwant…
查看更多内容
kvantum…
查看更多内容
kuantum…
查看更多内容
das Quant…
查看更多内容
kvantum…
查看更多内容
квант…
查看更多内容
需要一个翻译器吗?
获得快速、免费的翻译!
翻译器工具
quantum的发音是什么?
在英语词典中查看 quantum 的释义
浏览
quantitative easing
quantitatively
quantity
quantity surveyor
quantum
quantum computer
quantum computing
quantum leap
quantum mechanics
quantum更多的中文(简体)翻译
全部
quantum leap
quantum computer
quantum computing
quantum mechanics
查看全部意思»
“每日一词”
veggie burger
UK
Your browser doesn't support HTML5 audio
/ˈvedʒ.i ˌbɜː.ɡər/
US
Your browser doesn't support HTML5 audio
/ˈvedʒ.i ˌbɝː.ɡɚ/
a type of food similar to a hamburger but made without meat, by pressing together small pieces of vegetables, seeds, etc. into a flat, round shape
关于这个
博客
Forget doing it or forget to do it? Avoiding common mistakes with verb patterns (2)
March 06, 2024
查看更多
新词
stochastic parrot
March 04, 2024
查看更多
已添加至 list
回到页面顶端
内容
英语-中文(简体)例句翻译
©剑桥大学出版社与评估2024
学习
学习
学习
新词
帮助
纸质书出版
Word of the Year 2021
Word of the Year 2022
Word of the Year 2023
开发
开发
开发
词典API
双击查看
搜索Widgets
执照数据
关于
关于
关于
无障碍阅读
剑桥英语教学
剑桥大学出版社与评估
授权管理
Cookies与隐私保护
语料库
使用条款
京ICP备14002226号-2
©剑桥大学出版社与评估2024
剑桥词典+Plus
我的主页
+Plus 帮助
退出
词典
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
翻译
语法
同义词词典
Pronunciation
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录 /
注册
中文 (简体)
Change
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
中文 (简体)
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
关注我们
选择一本词典
最近的词和建议
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
语法与同义词词典
对自然书面和口头英语用法的解释
英语语法
同义词词典
Pronunciation
British and American pronunciations with audio
English Pronunciation
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
词典+Plus
词汇表
选择语言
中文 (简体)
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
内容
英语-中文(简体)
Noun
例句
Translations
语法
所有翻译
我的词汇表
把quantum添加到下面的一个词汇表中,或者创建一个新词汇表。
更多词汇表
前往词汇表
对该例句有想法吗?
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
Quantum | Definition & Facts | Britannica
Quantum | Definition & Facts | Britannica
Search Britannica
Click here to search
Search Britannica
Click here to search
Login
Subscribe
Subscribe
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
On This Day
One Good Fact
Dictionary
New Articles
History & Society
Lifestyles & Social Issues
Philosophy & Religion
Politics, Law & Government
World History
Science & Tech
Health & Medicine
Science
Technology
Biographies
Browse Biographies
Animals & Nature
Birds, Reptiles & Other Vertebrates
Bugs, Mollusks & Other Invertebrates
Environment
Fossils & Geologic Time
Mammals
Plants
Geography & Travel
Geography & Travel
Arts & Culture
Entertainment & Pop Culture
Literature
Sports & Recreation
Visual Arts
Companions
Demystified
Image Galleries
Infographics
Lists
Podcasts
Spotlights
Summaries
The Forum
Top Questions
#WTFact
100 Women
Britannica Kids
Saving Earth
Space Next 50
Student Center
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
quantum
Table of Contents
quantum
Table of Contents
Introduction
References & Edit History
Quick Facts & Related Topics
Videos
Quizzes
Physics and Natural Law
All About Physics Quiz
36 Questions from Britannica’s Most Popular Science Quizzes
Related Questions
What did J. Robert Oppenheimer do in the Manhattan Project?
Where was Max Planck educated?
What was Niels Bohr’s most important discovery?
Read Next
What Is Antimatter?
Timeline of the Manhattan Project
The Fermi Paradox: Where Are All the Aliens?
The First Atomic Bombs Tested and Used During World War II
Discover
7 of History's Most Notorious Serial Killers
How Many Electoral College Votes Does Each U.S. State Have?
12 Greek Gods and Goddesses
How Did Alexander the Great Really Die?
Did Marie-Antoinette Really Say “Let Them Eat Cake”?
America’s 5 Most Notorious Cold Cases (Including One You May Have Thought Was Already Solved)
What Did Cleopatra Look Like?
Home
Science
Physics
Matter & Energy
Science & Tech
quantum
physics
Actions
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/science/quantum
Give Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
The University of Melbourne - Pursuit - A brief history of Quantum
The University of Hawaiʻi Pressbooks - Introduction to Quantum Physics
Chemistry LibreTexts - Quantization of Energy
National Center for Biotechnology Information - PubMed Central - Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/science/quantum
Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
The University of Melbourne - Pursuit - A brief history of Quantum
The University of Hawaiʻi Pressbooks - Introduction to Quantum Physics
Chemistry LibreTexts - Quantization of Energy
National Center for Biotechnology Information - PubMed Central - Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction
Also known as: quanta, quantization
Written and fact-checked by
The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica
Last Updated:
Jan 14, 2024
•
Article History
Table of Contents
Category:
Science & Tech
Key People:
Niels Bohr
Max Planck
Enrico Fermi
P.A.M. Dirac
Hans Bethe
(Show more)
Related Topics:
quantum field theory
quantum number
graviton
Bell’s inequality
hidden variable
(Show more)
See all related content →
quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. Light, for example, appearing in some respects as a continuous electromagnetic wave, on the submicroscopic level is emitted and absorbed in discrete amounts, or quanta; and for light of a given wavelength, the magnitude of all the quanta emitted or absorbed is the same in both energy and momentum. These particle-like packets of light are called photons, a term also applicable to quanta of other forms of electromagnetic energy such as X rays and gamma rays. Submicroscopic mechanical vibrations in the layers of atoms comprising crystals also give up or take on energy and momentum in quanta called phonons.
All phenomena in submicroscopic systems (the realm of quantum mechanics) exhibit quantization: observable quantities are restricted to a natural set of discrete values. When the values are multiples of a constant least amount, that amount is referred to as a quantum of the observable. Thus Planck’s constant h is the quantum of action, and ℏ (i.e., h/2π) is the quantum of angular momentum, or spin.
Britannica Quiz
36 Questions from Britannica’s Most Popular Science Quizzes
The Editors of Encyclopaedia Britannica
This article was most recently revised and updated by Adam Augustyn.
什么是量子计算? | IBM
什么是量子计算? | IBM
什么是量子计算?
观看 IBM Quantum 量子计算系统 (04:31)
通往量子安全保障之路
什么是量子计算?
量子计算是一种快速崛起的技术,它利用量子力学定律来解决对经典计算机来说过于复杂的问题。
如今,IBM Quantum 量子计算机制造出了真正的量子硬件(这是一种科学家们在 30 年前才开始想象的工具),供成千上万的开发人员使用。 我们的工程师定期提供功能越来越强大的超导量子处理器,同时在软件和量子经典编排方面取得重大进展。 这项工作推动了改变世界所需的量子计算速度和能力。
这些量子计算机与已经存在了半个多世纪的经典计算机大不相同。 这是关于这种颠覆性技术的入门读物。
探索 IBM Quantum 系统
为什么我们需要量子计算机?
对于某些问题,超级计算机的表现并不那么出色。
当科学家和工程师们遇到难题时,他们把目光投向超级计算机。 这些是非常
庞大的经典计算机,通常具有数千个经典 CPU 和 GPU 核心。 然而,即使
是超级计算机,某些问题解决起来也十分困难。
如果超级计算机也无能为力,那可能是因为这台大型传统机器被要求解决
一个高度复杂的问题。 让传统计算机无能为力的原因通常是复杂性
复杂问题是许多变量以复杂方式相互作用的问题。 对
分子中单个原子的行为进行建模是一个复杂的问题,因为所有不同的电子都相互
作用。 在全球航运网络中为数百艘油轮挑选理想航线也是一项很复杂的任务
。
量子计算机用在什么地方?
观看梅赛德斯-奔驰的案例 (3:41)
观看埃克森美孚的案例 (3:38)
观看 CERN 的案例 (3:36)
为什么量子计算机速度更快
我们来看一个经典计算机无能为力的情况下量子计算机却能成功应对的例子:
超级计算机可能很擅长处理诸如对大型蛋白质序列数据库进行分类这样的艰巨任务,但是很难发现数据中决定这些蛋白质行为的微妙模式。
蛋白质由一长串的氨基酸构成,当它们折叠成复杂的形状时,就会成为有用的生物机器。 弄清楚蛋白质的折叠方式是一个对生物学和医学都具有重要意义的问题。
一台经典的超级计算机可能会尝试用蛮力折叠蛋白质,利用众多处理器检查各种可能的化学链弯曲方式,然后再得出答案。 但随着蛋白质序列变得越来越长、越来越复杂,超级计算机就会停止运行。 一条由 100 个氨基酸组成的链,理论上可以用数万亿种方式中的任何一种方式折叠。 没有哪台计算机所具有的工作内存足以处理单个折叠的所有可能组合。
量子计算算法采用了一种新方法来解决这些复杂的问题,即创建多维空间,在这些空间中,出现链接单个数据点的模式。 对于蛋白质折叠问题,这种模式可能是所需能量最少的折叠组合。 这种折叠组合就是问题的解决方案。
经典计算机无法创建这些计算空间,因此它们无法找到这些模式。 而对于蛋白质问题,已存在早期的量子算法,它们能够以更高效的全新方式找到折叠模式,而无需像经典计算机那样费力地执行检查程序。 随着量子硬件规模的扩大和这些算法的进步,它们可以解决对任何超级计算机来说都过于复杂的蛋白质折叠问题。
量子计算机如何工作?
量子计算机是优雅的机器,与超级计算机相比,体积更小,所需的能源也更少。 IBM Quantum 量子计算处理器是一块晶片,比笔记本电脑中的晶片大不了多少。 量子硬件系统大约有汽车那么大,主要由冷却系统组成,旨在使超导处理器保持超低运行温度。
经典处理器使用比特来执行操作。 而量子计算机则使用量子比特(CUE 比特)来运行多维量子算法。
超流体
您的台式计算机可能会使用风扇来冷却到适宜的工作温度。 而我们的量子处理器则需要非常低的温度 - 大约比绝对零度高百分之一度。 为了实现这一目标,我们使用超冷超流体来制造超导体。
超导体
在这些超低温度下,我们处理器中的某些材料表现出另一种重要的量子力学效应:电子可以毫无阻力地穿过这些材料。 这使它们成为“超导体”。
当电子通过超导体时,它们会配对,形成"库珀对"。这些对可以通过名为"量子隧穿"的过程,携带电荷穿过势垒或绝缘体。 放置在绝缘体两侧的两个超导体形成约瑟夫森结
控制
我们的量子计算机使用约瑟夫森结作为超导量子比特。 通过向这些量子比特发射微波光子,我们可以控制它们的行为,并让它们保存、更改和读出单个量子信息单元。
叠加
量子比特本身并不是很有用。 但它可以执行一个重要的技巧:将它保存的量子信息置于叠加状态,这代表了量子比特所有可能配置的组合。 叠加的量子比特组可以创建复杂的多维计算空间。 在这些空间中,可以用新的方式来表示复杂的问题。
纠缠
纠缠是一种量子力学效应,可将两个独立事物的行为关联起来。 当两个量子比特纠缠在一起时,其中一个量子比特的变化就会直接影响到另一个。 量子算法利用这些关系来寻找复杂问题的解决方案
让量子计算机有用
IBM Quantum 在构建量子硬件方面处于世界领先地位。 我们的路线图是一个清晰而详细的计划,用于扩展量子处理器,克服扩展问题,并构建实现量子优势所需的硬件。
但量子优势仅靠硬件是无法实现的。 IBM 还花了数年时间推进使用量子计算机完成有用工作所必需的软件。 我们开发了 Qiskit 量子 SDK。 它是开源的且基于 python,并且是迄今为止世界上使用最广泛的量子 SDK。 我们还开发了 Qiskit Runtime,这是世界上最强大的量子编程模型。 (在下一节中了解有关 Qiskit 和 Qiskit Runtime 以及如何入门的更多信息。)
实现量子优势需要找到一些新方法来减少错误、提高速度并协调量子和经典资源。 目前正在 Qiskit Runtime 中给这项工作打基础。
量子计算资源
量子案例研究
了解如今的企业如何与 IBM 合作解决最具挑战性的实际问题。
以量子为中心的超级计算:下一波计算浪潮
了解 IBM Quantum 的使命是将有用的量子计算带给全世界。
量子计算研究
量子计算为不同研究学科打开了令人眼花缭乱的新可能性。 从世界各地的专家那里了解这些内容。
量子计算入门
IBM 的量子计算机使用 Qiskit(链接位于 ibm.com 外部)进行编程。Qiskit 是我们基于 python 的开源量子 SDK。 Qiskit 拥有专用于金融、化学、最优化和机器学习的模块。
请查看文档(链接位于 ibm.com 外部),以快速入门并深入了解我们的开发者工具套件。
构建要在模拟器或实际硬件上运行的研发级别代码。
加入我们不断增长的社区(超过 400000 名用户)
准备好应对更大的工作负载了吗? 使用 Qiskit Runtime(我们的量子编程模型)可以大规模执行,从而高效地构建和扩展工作负载。 通过 Qiskit Runtime,用户可以轻松访问世界上性能最高的量子系统上的 HPC 混合计算,以部署定制量子经典应用程序。 Qiskit Runtime 提供了一个执行环境,用于将量子电路与经典处理能力整合在一起,从而从根本上加速某些量子程序的执行。 这意味着,在世界领先的量子系统上可以实现更快的迭代、更少的延迟和更不受限制的计算时间:Qiskit Runtime 基于云的执行模型在模拟分子行为方面展示了 120 倍的加速
腾讯量子实验室 - Tencent Quantum Laboratory
腾讯量子实验室 - Tencent Quantum Laboratory
首页
产品
量子计算
TensorCircuit
量子参量放大器
材料研究
MRP腾讯云官网产品
TEFS公有云计算平台
TEFS私有云解决方案
药物研发
药物虛拟筛选
ADMET平台
MdrDB耐药性数据库
量子计算
TensorCircuit
量子参量放大器
材料研究
MRP腾讯云官网产品
TEFS公有云计算平台
TEFS私有云解决方案
药物研发
药物虛拟筛选
ADMET平台
MdrDB耐药性数据库
学术成果
研究团队
探索量子科技,赋能产业未来
腾讯量子实验室为腾讯在量子计算领域的前瞻性布局,是腾讯前沿科技实验室矩阵的成员之一。实验室秉承腾讯公司用户为本,科技向善的使命愿景,关注基础科学研究与下游产业应用,致力于促进量子科技发展和落地。
关于腾讯量子实验室
腾讯量子实验室旨在研究量子计算系统,量子计算与量子系统模拟的算法和基础理论,以及在相关应用领域和行业中的应用。 实验室开发新的量子组合算法和量子AI算法,并分析在信息处理、新药研发和材料设计等方面的应用前景。 实验室在腾讯云上研发材料研究平台和药物发现平台,建立材料、制药、能源及化工等相关领域的生态系统。 同时实验室也持续关注和研究全栈量子计算机系统中的相关问题。
研究方向
量子计算系统
致力于研究超导量子芯片设计、测控、读取和实时量子纠错,推进全栈式量子计算机发展,并探索其应用。
量子算法
研究范围包括但不限于变分量子算法、量子组合算法、 量子启发经典算法和量子电路优化。
材料研究
致力于新型功能材料的研发,结合AI等先进算法提升材料仿真计算效率,并提供多尺度的材料模拟研究服务。
药物研发
融合量子计算、人工智能和经典计算机辅助药物设计,构建药物发现新范式,加速新药研发进程,并提供多个模块的早期药物发现研究服务及数据支持。
产品介绍
量子计算
量子计算方向
量子计算作为目前最受关注的前沿技术之一,需要包含物理、工程制造、计算机等多个学科的专业技术支持。腾讯量子实验室关注领域中从全栈量子计算系统搭建到其前瞻应用全流程解决方案,以自动化、工程化的思维解决过程中的真实问题,为科研人员提供高效便捷的设备和服务,将科研人员从繁杂的基础工作中解放出来,助力提升科研效率。
查看详情
材料研究
材料研究方向
利用计算资源对特定体系进行不同尺度的模拟计算是现代材料研究领域必要的研究手段,它架起了材料领域中理论科学和实验科学之间的桥梁。腾讯量子实验室基于腾讯云弹性的计算资源和丰富的云计算产品,整合多个主流计算软件,为用户提供高效便捷一站式的材料研究服务。实验室充分发挥云计算的优势,依据用户需求,研发了公有云、私有云两种形态的服务产品。
查看详情
药物研发
药物研发方向
量子实验室针对早期药物发现,打造全新的人工智能算法及独有数据库,加速新药研发进程。目前,实验室结合自研的前沿算法和腾讯云高性能云计算,提供分子成药性性质预测、高通量药物筛选、分子生成、耐药性数据库等多个模块的研究服务和数据支持,挑战传统研发的效率瓶颈,赋能新药研发,实现研发速度和规模的突破。
查看详情
新闻动态
量子电路优化取得最优结果
腾讯量子实验室近期在受控量子态制备和一般量子电路的优化方面取得了重要进展。在给定任意多个辅助量子比特的情况下,该工作给出了受控量子态制备这一核心问题的最优深度和大小的量子电路,为近期学术界在该领域的一系列探索画上圆满的句号。文章还进一步将其应用到改进一般量子电路的无损压缩上,相比之前的结果,其在电路深度上有平方量级的提升。相关论文已发表在Quantum期刊上。
2023-05-19 18:18
腾讯发布高性能量子计算化学软件包,助力量子计算化学研究
TenCirChem 是腾讯量子实验室最新开源发布的量子计算化学领域的软件产品,基于腾讯自研的量子线路模拟框架 TensorCircuit 构建,通过张量网络缩并引擎实现量子线路模拟,在设计和运行效率上都远超国内外同类开源软件。
2023-03-23 21:52
云计算助力材料多尺度计算研讨会
新材料产业将支撑我国战略性新兴产业的发展。本次活动(直播时间8月26日14:30-17:00 )旨在为材料科学领域的科研工作者展示多尺度计算模拟与云计算领域最新进展、 最新技术及最新成果,促进云计算前沿科技与材料多尺度模拟相融合,推动多尺度计算模拟的理论发展和应用探索。
2022-08-23 20:22
腾讯量子发布自研量子参量放大器产品
腾讯量子实验室持续关注和研究全栈量子计算机系统中的相关问题,在量子比特测控方面,包括比特读取在内的多个方向取得了阶段性的成果。腾讯量子实验室从实际需求出发,结合国内外超导量子计算项目特点,自主研发并生产了一款具有创新设计的阻抗匹配量子参量放大器(impedance-matched parametric amplifier, IMPA)。腾讯量子实验室持续关注和研究全栈量子计算机系统中的相关问题,在量子比特测控方面,包括比特读取在内的多个方向取得了阶段性的成果。腾讯量子实验室从实际需求出发,结合国内外超导量子计算项目特点,自主研发并生产了一款具有创新设计的阻抗匹配量子参量放大器(impedance-matched parametric amplifier, IMPA)。该款IMPA即将投放市场,欢迎有需求的合作伙伴来邮咨询。
2022-08-01 18:30
邀请函:NISQ 量子算法网络研讨会@7月1日
本次研讨会由腾讯量子实验室主办,主要关注NISQ算法特别是变分量子算法和量子机器学习等领域。我们将共邀来自学术界和产业界的顶级专家和合作伙伴,分享在该领域的科研进展和工程实践,介绍腾讯量子实验室最新发布的开源量子线路和算法模拟框架TensorCircuit, 并共同探讨量子计算的发展趋势和应用前景。
2022-06-30 12:16
PWmat入驻腾讯TEFS,共同探索大体系计算应用场景
近日,腾讯量子实验室与龙讯旷腾达成合作,后者自主研发的第一性原理计算软件PWmat正式入驻基于腾讯云的材料计算平台TEFS,成为TEFS软件生态合作伙伴中的一员。双方将基于各自的优势以及腾讯云计算的强大算力,共同探索大体系计算的应用场景。欢迎广大材料科学工作者前来咨询或申请使用。
2022-06-22 10:49
大咖邀请您:NISQ量子算法研讨会,7月1日不见不散
本次研讨会由腾讯量子实验室主办,主要关注NISQ算法特别是变分量子算法和量子机器学习等领域。我们将共邀来自学术界和产业界的顶级专家和合作伙伴,分享在该领域的科研进展和工程实践,介绍腾讯量子实验室最新发布的开源量子线路和算法模拟框架TensorCircuit,并共同探讨量子计算的发展趋势和应用前景。
2022-06-17 18:03
聚合五大学科,边界不被定义!腾讯星火挑战周2022正式启动
腾讯量子实验室将继续深度参与本期腾讯星火计划科技少年挑战周,与优秀的少年科学家们共同探索以下领域:量子模拟(物理/化学/新材料)、量子机器学习(生物/制药)和量子优化(组合数学)。期待与你7月相见!
2022-06-13 18:30
TensorCircuit: 腾讯自研高性能框架助力量子科技发展
5月26日腾讯量子实验室正式发布开源了高性能量子线路和量子算法模拟框架TensorCircuit。本文将进一步介绍分析TensorCircuit作为量子软件产品的优势和特色,并展示 TensorCircuit助力量子科技发展创新和落地的真实场景和具体案例。我们欢迎量子计算相关的科研人员加入TensorCircuit开源社区,共筑面向未来的量子生态。
2022-06-10 18:28
TensorCircuit: 腾讯发布高效量子模拟开源软件
本文介绍了腾讯量子实验室最新开源发布的量子模拟软件框架TensorCircuit,包括其定位、特色、优势和生态。相较于主流量子模拟软件,TensorCircuit的模拟效率有数量级的提升,且针对特定任务可以模拟数百个量子比特的超大系统。TensorCircuit欢迎学术界和企业界的用户积极使用,并参与开源建设,共同构筑面向未来的量子生态。
2022-05-26 12:15
腾讯量子研究最新进展:实现变分量子线路和神经网络融合的指数加速
本文介绍腾讯量子实验室近期关于变分量子算法的新进展,该工作提出了一个新颖的方式来结合神经网络与含参量子线路。在与传统VQE使用一致的量子资源消耗下,且经典的额外开销可以严格证明是多项式的同时还实现了更强大的表达力。相关文章已经被Physical Review Letters 接收。
2022-05-07 17:30
4月9日,不见不散:TEFS x VASPKIT Pro 应用专场培训报名
TEFS (Tencent Elastic First-principles Simulation) 是腾讯量子实验室开发的用于材料计算的Saas服务平台,深度集成了第一性原理计算软件VASP,可对腾讯云数十种性能优异的高性能服务器开箱即用,无需安装部署一站式提供数据分析与可视化、LaTex论文撰写和项目管理等特色功能。
2022-04-01 17:59
VASPKIT Pro入驻腾讯TEFS,共同推进计算材料发展
近日,VASPKIT团队与腾讯量子实验室达成合作,VASPKIT Pro软件正式入驻腾讯量子实验室旗下的材料模拟SaaS服务平台TEFS,成为TEFS软件生态合作伙伴中的一员。双方基于各自的优势以及腾讯云计算的强大算力,在材料模拟平台建设和材料模拟软件开发等方面达成共识,双方期望为新材料的研发、新机理的发现作出贡献。
2022-03-25 17:38
量子电路编译最新进展:探索软硬件联合编译方式对抗量子计算机过程中的串扰噪声
腾讯量子实验室近期关于抗噪声量子电路编译优化工作的进展,相关文章已经被计算机体系结构、编程语言与操作系统顶会ASPLOS2022接收。
2022-03-09 17:20
腾讯量子研究最新进展:首次实现量子开放系统的绝热演化捷径
腾讯量子实验室近期完成的量子调控和量子比特读取领域的原创研究工作。利用与环境有耦合的腔QED系统,研究者首次设计并验证了开放量子系统的绝热捷径,并使用多模优化控制方法加速了超导量子比特的读取与重置。相关论文近日发表于Nature Communications。
2022-01-14 15:42
突破极限:实现百万原子超大体系平面波精度第一性原理计算
近日,腾讯量子实验室、腾讯云高性能计算产品团队、北京龙讯旷腾科技有限公司和盐城工学院石林教授团队联合攻关,成功实现了百万硅原子超大规模体系的平面波精度第一性原理计算。该项工作由腾讯量子实验室牵头,基于龙讯旷腾公司的线性标度三维分块算法(LS3DF)以及腾讯云高性能计算集群产品完成。后续腾讯量子实验室和龙讯旷腾公司将进一步深度合作,持续探索超大体系平面波精度第一性原理计算的商用化场景,助力高校和企业科研团队解决材料科学研究中的重难点问题。
2022-01-05 15:52
腾讯量子计算最新研究进展:高效超导量子比特初始化方案
本文介绍一种实现超导量子比特快速初始化的方案。与业内已有工作相比,该初始化方法具有速度快,保真度高,对周围比特影响小,扩展性强的优势。该工作由腾讯量子实验室完成,近日发表在学术期刊《Nature Communications》上。
2021-10-27 16:16
活动预告 | 腾讯量子实验室与你相约2021先进电池材料集群产业发展论坛
2021先进电池材料集群产业发展论坛将于2021年10月29-31日在深圳举办。该论坛将以“创新引领碳中和,集群聚合新势力”为主题,在30/60双碳背景下就多个行业热点议题展开,旨在把脉行业趋向,为企业发展提供新思路。本次论坛分会场一“下一代低碳电池核心关键材料设计与研发”由腾讯量子实验室冠名赞助。腾讯量子实验室郝少刚博士将受邀提供《人工智能赋能材料设计:从算法开发到云平台应用》的专题报告,并出席论坛圆桌会议。
2021-10-28 12:08
腾讯公布量子计算机体系结构最新研究进展,探索高并行性架构
本文介绍了腾讯量子实验室近期关于量子计算机微体系结构并行化设计和软硬件实现的工作进展。相关文章已被计算机体系结构顶会MICRO2021接收。关于体系结构研究、测控系统产品、项目合作等方面的咨询,欢迎发送邮件至qlab@tencent.com。
2021-09-02 11:09
腾讯发布TEFS第一性原理计算平台
7月1日,腾讯量子实验室正式发布了“腾讯弹性第一性原理计算平台(Tencent Elastic First-principles Simulation, TEFS)”。基于腾讯云的强大算力及用户为本的设计理念,TEFS平台致力于为材料计算科研工作者提供一站式计算服务。
2021-07-06 21:02
腾讯与清华大学物理系签署合作备忘录,探索材料计算新领域
6月16日,腾讯量子实验室与清华大学物理系在北京签署合作备忘录,双方就功能材料数据库、机器学习辅助的材料计算方法、材料虚拟筛选云平台等领域展开探讨,达成合作。清华大学物理系段文晖院士与腾讯量子实验室负责人、腾讯杰出科学家张胜誉共同签署了合作备忘录,清华大学物理系徐勇教授、腾讯量子实验室专家研究员郝少刚、腾讯科学技术协会张谦秘书长等参与了签署仪式。
2021-06-23 16:33
体验中心
量子计算
TensorCircuit
材料研究
TEFSMRP
药物研发
药物虚拟筛选ADMETMdrDB
联系我们
合作邮箱
qlab@tencent.com
企业微信
关注我们
TEFS培训频道
Bilibili视频
微信公众号
联系我们
合作邮箱:
qlab@tencent.com
关注我们
TEFS培训:
Bilibili视频
合作企业微信
微信公众号
Copyright © 2024 Tencent Quantum Lab All Rights Reserved.
ICP备案/许可证号:粤B2-20090059 | 粤公网安备 44030502008569号
Quantum – the open journal for quantum science
Quantum – the open journal for quantum science
Skip to content
the open journal for quantum science
Menu
Papers
Perspectives
Instructions
For authors
For referees
For editors
For authors of Views
Editorial policies
People
About
News
Mission and structure
Tools and open source
Code of Conduct
Outreach
Press
Contact
Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators
Search for:
Quantum has published 1273 Papers in 8 Volumes, as well as 78 Views in Quantum Views.
Paper
Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators
Jean-Yves Desaules, Guo-Xian Su, Ian P. McCulloch, Bing Yang, Zlatko Papić, and Jad C. Halimeh,
Quantum 8, 1274 (2024).
The quantum simulation of gauge theories on synthetic quantum matter devices has gained a lot of traction in the last decade, making possible the observation of a range of exotic quantum man…
Paper
Entanglement dynamics of photon pairs and quantum memories in the gravitational field of the earth
Roy Barzel, Mustafa Gündoğan, Markus Krutzik, Dennis Rätzel, and Claus Lämmerzahl,
Quantum 8, 1273 (2024).
We investigate the effect of entanglement dynamics due to gravity – the basis of a mechanism of universal decoherence – for photonic states and quantum memories in Mach-Zehnder and Hong-Ou-M…
Paper
Entanglement-symmetries of covariant channels
Dominic Verdon,
Quantum 8, 1272 (2024).
Let $G$ and $G'$ be monoidally equivalent compact quantum groups, and let $H$ be a Hopf-Galois object realising a monoidal equivalence between these groups' representation categories. This monoida…
Paper
Dynamical quantum phase transitions from random matrix theory
David Pérez-García, Leonardo Santilli, and Miguel Tierz,
Quantum 8, 1271 (2024).
We uncover a novel dynamical quantum phase transition, using random matrix theory and its associated notion of planar limit. We study it for the isotropic XY Heisenberg spin chain. For this,…
Paper
Identifying families of multipartite states with non-trivial local entanglement transformations
Nicky Kai Hong Li, Cornelia Spee, Martin Hebenstreit, Julio I. de Vicente, and Barbara Kraus,
Quantum 8, 1270 (2024).
The study of state transformations by spatially separated parties with local operations assisted by classical communication (LOCC) plays a crucial role in entanglement theory and its applica…
Paper
Discrimination and certification of unknown quantum measurements
Aleksandra Krawiec, Łukasz Pawela, and Zbigniew Puchała,
Quantum 8, 1269 (2024).
We study the discrimination of von Neumann measurements in the scenario when we are given a reference measurement and some other measurement. The aim of the discrimination is to determine wh…
Paper
Bicolor loop models and their long range entanglement
Zhao Zhang,
Quantum 8, 1268 (2024).
Quantum loop models are well studied objects in the context of lattice gauge theories and topological quantum computing. They usually carry long range entanglement that is captured by the to…
Paper
Towards a measurement theory in QFT: “Impossible” quantum measurements are possible but not ideal
Nicolas Gisin and Flavio Del Santo,
Quantum 8, 1267 (2024).
Naive attempts to put together relativity and quantum measurements lead to signaling between space-like separated regions. In QFT, these are known as $\textit{impossible measurements}$. We sho…
Paper
Improved Accuracy for Trotter Simulations Using Chebyshev Interpolation
Gumaro Rendon, Jacob Watkins, and Nathan Wiebe,
Quantum 8, 1266 (2024).
Quantum metrology allows for measuring properties of a quantum system at the optimal Heisenberg limit. However, when the relevant quantum states are prepared using digital Hamiltonian simula…
Paper
Quantum Vision Transformers
El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and Yun Yvonna Li,
Quantum 8, 1265 (2024).
In this work, quantum transformers are designed and analysed in detail by extending the state-of-the-art classical transformer neural network architectures known to be very performant in nat…
Paper
Accelerating Quantum Algorithms with Precomputation
William J. Huggins and Jarrod R. McClean,
Quantum 8, 1264 (2024).
Real-world applications of computing can be extremely time-sensitive. It would be valuable if we could accelerate such tasks by performing some of the work ahead of time. Motivated by this,…
Paper
Analogue Quantum Simulation with Fixed-Frequency Transmon Qubits
Sean Greenaway, Adam Smith, Florian Mintert, and Daniel Malz,
Quantum 8, 1263 (2024).
We experimentally assess the suitability of transmon qubits with fixed frequencies and fixed interactions for the realization of analogue quantum simulations of spin systems. We test a set o…
Paper
Taming the Rotating Wave Approximation
Daniel Burgarth, Paolo Facchi, Robin Hillier, and Marilena Ligabò,
Quantum 8, 1262 (2024).
The interaction between light and matter is one of the oldest research areas of quantum mechanics, and a field that just keeps on delivering new insights and applications. With the arrival o…
Paper
Stabilizer Formalism for Operator Algebra Quantum Error Correction
Guillaume Dauphinais, David W. Kribs, and Michael Vasmer,
Quantum 8, 1261 (2024).
We introduce a stabilizer formalism for the general quantum error correction framework called operator algebra quantum error correction (OAQEC), which generalizes Gottesman's formulation for…
Paper
Hierarchical generalization of dual unitarity
Xie-Hang Yu, Zhiyuan Wang, and Pavel Kos,
Quantum 8, 1260 (2024).
Quantum dynamics with local interactions in lattice models display rich physics, but is notoriously hard to study. Dual-unitary circuits allow for exact answers to interesting physical quest…
Paper
A hybrid quantum algorithm to detect conical intersections
Emiel Koridon, Joana Fraxanet, Alexandre Dauphin, Lucas Visscher, Thomas E. O’Brien, and Stefano Polla,
Quantum 8, 1259 (2024).
Conical intersections are topologically protected crossings between the potential energy surfaces of a molecular Hamiltonian, known to play an important role in chemical processes such as ph…
Posts navigation
Older posts
Quantum is an open-access peer-reviewed journal for quantum science and related fields.
Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
Sign up for our monthly digest of papers and other news.People Coordinating editors
Carlo BeenakkerEric CavalcantiSevag GharibianUjjwal SenRonald de Wolf
Editors
Elizabeth AgudeloÁlvaro AlhambraAnurag AnshuSimon ApersSrinivasan ArunachalamRemigiusz AugusiakMiriam BackensKishor BhartiCyril BranciardDan BrowneEarl CampbellMichele CampisiÁngela CapelAngelo CarolloMarco CerezoUlysse ChabaudFrancesco CiccarelloAndrea ColadangeloIvan ContrerasBorivoje DakicAlexander DalzellAbhinav DeshpandeYongshan DingVedran DunjkoPhilippe FaistDi FangMáté FarkasOmar FawziNicolai FriisRoohollah GhobadiFlaminia GiacominiGéza GiedkeAaron GoldbergDaniel GrierAlex GriloTom GurAlioscia HammaJonas HelsenPhilipp HöhnIsaac KimRichard KüngFelix LeditzkyTongyang LiMuyuan LiJin-Peng LiuSam MacArdleTommaso MacrìLaura MančinskaOlivia Di MatteoPérola MilmanMark MitchisonKavan ModiTomoyuki MorimaeIon NechitaBryan O'GormanAnna PappaSaverio PascazioMatthew PuseyNicolás QuesadaPatrick RebentrostAnsis RosmanisKrishna Kumar SabapathyNitica SakharwadeMarcelo SantosMohan SarovarPhilipp SchindlerDavid SchmidGael SentísKunal SharmaHimadri Shekhar DharJens SiewertPaul SkrzypczykAndré StefanovLuca TagliacozzoJordi TuraPetros WalldenXin WangAlexander WilceMagdalena Zych
Executive Board
Christian GogolinMarcus HuberLídia del Rio
Steering Board
Antonio AcínAnne BroadbentHarry BuhrmanDaniel BurgarthGuido BurkardJens EisertSteven FlammiaCassandra GranadeAram HarrowKhabat HeshamiChris HeunenStacey JefferyShelby KimmelMatthew LeiferDebbie LeungChaoyang LuChiara MacchiavelloMilan MosonyiAhsan NazirRomán OrúsJoseph M. RenesAna Maria ReyAnna SanperaJörg SchmiedmayerUrbasi SinhaJohn A. SmolinRobert W. SpekkensAephraim M. SteinbergFrancesca VidottoMichael WalterReinhard WernerBirgitta WhaleyWitlef WieczorekAndreas WinterKarol Życzkowski
Supporters
Support Quantum and
Memberships and Indexing
Feedback and discussion on /r/quantumjournal
Contact us by email.
© Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
Some rights reserved.
Terms and conditions
Impressum
Data protection and privacy policy
https://doi.org/10.22331/q
ISSN 2521-327X
Quantum practices open accounting.
This surveillance-free website does not collect cookies, track visitors, or sell their data.
Copyright © 2024 Quantum –
OnePress theme by FameThemes
40 years of quantum computing | Nature Reviews Physics
40 years of quantum computing | Nature Reviews Physics
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Sign up for alerts
RSS feed
nature
nature reviews physics
editorials
article
40 years of quantum computing
Download PDF
Download PDF
Editorial
Published: 10 January 2022
40 years of quantum computing
Nature Reviews Physics
volume 4, page 1 (2022)Cite this article
21k Accesses
8 Citations
52 Altmetric
Metrics details
Subjects
Qubits
This year we celebrate four decades of quantum computing by looking back at the milestones of the field and forward to the challenges and opportunities that lie ahead.
In science there are few true eureka moments experienced by lone geniuses, but rather a continuous exchange and development of ideas that drive the collective human curiosity in new directions. Before a new field of research is born, there is usually a time when many similar ideas are in the air and scientists start to see something new forming, but cannot quite put their finger on it. Then someone manages to articulate a new concept, opening a new direction. From there, it may take years or even decades until the full implications are grasped. Such is the case of quantum computing.In the early 1980s a deep connection between physics and computation was becoming evident. Twenty years earlier, Rolf Landauer had linked thermodynamics and information. In 1980, mathematician Yuri Manin mentioned in the introduction of his book Computable and Uncomputable (in Russian) the idea of a quantum automaton that used superposition and entanglement (see the English translation in ref.1) and Paul Benioff discussed2 a microscopic quantum mechanical Hamiltonian as a model of Turing machines. Then, in May 1981, a conference on the ‘Physics of Computation’ organized by MIT and IBM brought together physicists and computer scientists. Among the participants were some well-known scientists like Freeman Dyson, John Archibald Wheeler or Richard Feynman, Landauer and Benioff, and others whose names resonate with anyone having worked in quantum computing: Charles Bennett, Tommaso Toffoli, Edward Fredkin. The talks were published the next year in the International Journal of Theoretical Physics.It is difficult to tell to what extent these papers were influenced by the discussions at the meeting or whether the ideas presented had been articulated by individual scientists beforehand. Most contributors referenced the other papers, except Feynman who did not cite anyone (although he did credit Fredkin for inspiration) and just transcribed his keynote speech with its colloquialisms (“Nature isn’t classical, dammit.”). His paper3 has become a landmark in quantum computation and simulation, and has been credited for the birth of these fields. Feynman took the ideas that were in the air — computation is a physical process, perhaps even a quantum mechanical one — then turned them around by asking how to compute (simulate) physics. He showed that “quantum mechanics can’t seem to be imitable by a local classical computer”, but could be tacked by “quantum computers — universal quantum simulators”. Manin had had a similar intuition1 (“the quantum behaviour of the system might be much more complex than its classical simulation”), but he did not develop it further.Although it is hard to assign a single moment in time as the starting point of quantum computing, as a journal, we like to take the 1982 issue of the International Journal of Theoretical Physics as the crystallization of the idea of a quantum computer. We would also like to credit all the pioneers whose ideas connected quantum mechanics with computing.From 1982 to today quantum computing has been on a journey with many ups and downs and unexpected encounters. It saw great excitement after Shor’s quantum algorithm for factorization in 1994, followed by the first proposals for building a quantum computer. Hopes were high, but then came the realization of how difficult it would be in practice. No other algorithms to rival the potential of Shor’s were found. Despite disappointment, momentum was not lost and the field branched into different directions. Unexpected connections to fundamental physics and insight into the foundations of quantum mechanics were uncovered and numerous advances were made both in theory and experiment. Things started to pick up again for quantum computing and the past five years have witnessed a renewed commercial interest and the first demonstrations of quantum computers performing tasks that are hard for classical computers, a quantum advantage.To celebrate four decades of quantum computing we put together a Collection of relevant content from our pages. As we have done in the past, we will revisit milestone papers and their legacy in ‘then and now’-type retrospective pieces. We will also look ahead with a Roadmap article and other upcoming content. Watch this space.
ReferencesMathematics as Metaphor. Selected Essays of Yuri I. Manin 77–78 (American Mathematical Society, 2007).Benioff, P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980).Article
ADS
MathSciNet
Google Scholar
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).Article
MathSciNet
Google Scholar
Download referencesRights and permissionsReprints and permissionsAbout this articleCite this article 40 years of quantum computing.
Nat Rev Phys 4, 1 (2022). https://doi.org/10.1038/s42254-021-00410-6Download citationPublished: 10 January 2022Issue Date: January 2022DOI: https://doi.org/10.1038/s42254-021-00410-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
Download PDF
Associated content
Collection
40 years of quantum computing
Advertisement
Explore content
Reviews & Analysis
News & Comment
Current issue
Collections
Follow us on Twitter
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
Content Types
About the Editors
Editorial input and checks
Editorial Values Statement
Journal Metrics
Publishing model
Editorial policies
Contact
Journal Credits
Reviews Cross-Journal Editorial Team
Publish with us
For Authors
For Referees
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Reviews Physics (Nat Rev Phys)
ISSN 2522-5820 (online)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
Quantum Science and Technology - IOPscience
Quantum Science and Technology - IOPscience
Skip to content
Accessibility Links
Skip to content
Skip to search IOPscience
Skip to Journals list
Accessibility help
IOP Science home
Accessibility Help
Search
Journals
Journals list
Browse more than 100 science journal titles
Subject collections
Read the very best research published in IOP journals
Publishing partners
Partner organisations and publications
Open access
IOP Publishing open access policy guide
IOP Conference Series
Read open access proceedings from science conferences worldwide
Books
Publishing Support
Login
IOPscience login / Sign Up
Click here to close this panel.
Search
Primary search
Search all IOPscience content
Article Lookup
Select journal (required)
Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)
Volume number:
Issue number (if known):
Article or page number:
Quantum Science and Technology
Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
We are proudly declaring that science is our only shareholder.
ISSN: 2058-9565
SUPPORTS OPEN ACCESS
A multidisciplinary, high impact journal devoted to publishing research of the highest quality and significance covering the science and application of all quantum-enabled technologies.
Submit
an article
opens in new tab
Track my article opens in new tab
RSS
Sign up for new issue notifications
Current volume
Number 2, April 2024Number 1, January 2024
Journal archive
Vol 9, 2024Vol 8, 2023Vol 7, 2022Vol 6, 2021Vol 5, 2020Vol 4, 2019Vol 3, 2018Vol 2, 2017Vol 1, 2016
Focus issues
Focus on Recent Progress in Quantum Computation and Quantum SimulationFocus on Perspectives on Societal Aspects and Impacts of Quantum TechnologiesFocus on Cold Atoms in SpaceFocus on Ion Trap TechnologyFocus on Quantum ChemistryFocus on Quantum Machine LearningFocus on Quantum OptomechanicsFocus on Quantum Sensors for New-Physics DiscoveriesFocus on Quantum Software
Median submission to first decision before peer review
10 days
Median submission to first decision after peer review
75 days
Impact factor
6.7
Citescore
11.6
Full list of journal metrics
Most read
Latest articles
Review articles
Trending
Open Access
Most read
Open all abstracts, in this tab
The following article is Open access
Parameterized quantum circuits as machine learning models
Marcello Benedetti et al 2019 Quantum Sci. Technol. 4 043001
Open abstract
View article, Parameterized quantum circuits as machine learning models
PDF, Parameterized quantum circuits as machine learning models
Hybrid quantum–classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
https://doi.org/10.1088/2058-9565/ab4eb5
The following article is Open access
Demonstration of quantum volume 64 on a superconducting quantum computing system
Petar Jurcevic et al 2021 Quantum Sci. Technol. 6 025020
Open abstract
View article, Demonstration of quantum volume 64 on a superconducting quantum computing system
PDF, Demonstration of quantum volume 64 on a superconducting quantum computing system
We improve the quality of quantum circuits on superconducting quantum computing systems, as measured by the quantum volume (QV), with a combination of dynamical decoupling, compiler optimizations, shorter two-qubit gates, and excited state promoted readout. This result shows that the path to larger QV systems requires the simultaneous increase of coherence, control gate fidelities, measurement fidelities, and smarter software which takes into account hardware details, thereby demonstrating the need to continue to co-design the software and hardware stack for the foreseeable future.
https://doi.org/10.1088/2058-9565/abe519
The following article is Open access
Quantum information processing with bosonic qubits in circuit QED
Atharv Joshi et al 2021 Quantum Sci. Technol. 6 033001
Open abstract
View article, Quantum information processing with bosonic qubits in circuit QED
PDF, Quantum information processing with bosonic qubits in circuit QED
The unique features of quantum theory offer a powerful new paradigm for information processing. Translating these mathematical abstractions into useful algorithms and applications requires quantum systems with significant complexity and sufficiently low error rates. Such quantum systems must be made from robust hardware that can coherently store, process, and extract the encoded information, as well as possess effective quantum error correction (QEC) protocols to detect and correct errors. Circuit quantum electrodynamics (cQED) provides a promising hardware platform for implementing robust quantum devices. In particular, bosonic encodings in cQED that use multi-photon states of superconducting cavities to encode information have shown success in realizing hardware-efficient QEC. Here, we review recent developments in the theory and implementation of QEC with bosonic codes and report the progress made toward realizing fault-tolerant quantum information processing with cQED devices.
https://doi.org/10.1088/2058-9565/abe989
The following article is Open access
Quantum state preparation using tensor networks
Ar A Melnikov et al 2023 Quantum Sci. Technol. 8 035027
Open abstract
View article, Quantum state preparation using tensor networks
PDF, Quantum state preparation using tensor networks
Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a 'cut once, measure twice' method, which allows us to avoid barren plateaus during gates' update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.
https://doi.org/10.1088/2058-9565/acd9e7
The following article is Open access
Building blocks of a flip-chip integrated superconducting quantum processor
Sandoko Kosen et al 2022 Quantum Sci. Technol. 7 035018
Open abstract
View article, Building blocks of a flip-chip integrated superconducting quantum processor
PDF, Building blocks of a flip-chip integrated superconducting quantum processor
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips—one quantum chip and one control chip—that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90 μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.
https://doi.org/10.1088/2058-9565/ac734b
The following article is Open access
Quantum optimization using variational algorithms on near-term quantum devices
Nikolaj Moll et al 2018 Quantum Sci. Technol. 3 030503
Open abstract
View article, Quantum optimization using variational algorithms on near-term quantum devices
PDF, Quantum optimization using variational algorithms on near-term quantum devices
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term quantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.
https://doi.org/10.1088/2058-9565/aab822
The following article is Open access
Perspectives on quantum transduction
Nikolai Lauk et al 2020 Quantum Sci. Technol. 5 020501
Open abstract
View article, Perspectives on quantum transduction
PDF, Perspectives on quantum transduction
Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.
https://doi.org/10.1088/2058-9565/ab788a
The following article is Open access
An expressive ansatz for low-depth quantum approximate optimisation
V Vijendran et al 2024 Quantum Sci. Technol. 9 025010
Open abstract
View article, An expressive ansatz for low-depth quantum approximate optimisation
PDF, An expressive ansatz for low-depth quantum approximate optimisation
The quantum approximate optimisation algorithm (QAOA) is a hybrid quantum–classical algorithm used to approximately solve combinatorial optimisation problems. It involves multiple iterations of a parameterised ansatz that consists of a problem and mixer Hamiltonian, with the parameters being classically optimised. While QAOA can be implemented on near-term quantum hardware, physical limitations such as gate noise, restricted qubit connectivity, and state-preparation-and-measurement (SPAM) errors can limit circuit depth and decrease performance. To address these limitations, this work introduces the eXpressive QAOA (XQAOA), an overparameterised variant of QAOA that assigns more classical parameters to the ansatz to improve its performance at low depths. XQAOA also introduces an additional Pauli-Y component in the mixer Hamiltonian, allowing the mixer to implement arbitrary unitary transformations on each qubit. To benchmark the performance of XQAOA at unit depth, we derive its closed-form expression for the MaxCut problem and compare it to QAOA, Multi-Angle QAOA (MA-QAOA) (Herrman et al 2022 Sci. Rep.12 6781), a classical-relaxed algorithm, and the state-of-the-art Goemans–Williamson algorithm on a set of unweighted regular graphs with 128 and 256 nodes for degrees ranging from 3 to 10. Our results indicate that at unit depth, XQAOA has benign loss landscapes with local minima concentrated near the global optimum, allowing it to consistently outperform QAOA, MA-QAOA, and the classical-relaxed algorithm on all graph instances and the Goemans–Williamson algorithm on graph instances with degrees greater than 4. Small-scale simulations also reveal that unit-depth XQAOA invariably surpasses both QAOA and MA-QAOA on all tested depths up to five. Additionally, we find an infinite family of graphs for which XQAOA solves MaxCut exactly and analytically show that for some graphs in this family, special cases of XQAOA are capable of achieving a much larger approximation ratio than QAOA. Overall, XQAOA is a more viable choice for variational quantum optimisation on near-term quantum devices, offering competitive performance at low depths.
https://doi.org/10.1088/2058-9565/ad200a
The following article is Open access
Propagating quantum microwaves: towards applications in communication and sensing
Mateo Casariego et al 2023 Quantum Sci. Technol. 8 023001
Open abstract
View article, Propagating quantum microwaves: towards applications in communication and sensing
PDF, Propagating quantum microwaves: towards applications in communication and sensing
The field of propagating quantum microwaves is a relatively new area of research that is receiving increased attention due to its promising technological applications, both in communication and sensing. While formally similar to quantum optics, some key elements required by the aim of having a controllable quantum microwave interface are still on an early stage of development. Here, we argue where and why a fully operative toolbox for propagating quantum microwaves will be needed, pointing to novel directions of research along the way: from microwave quantum key distribution to quantum radar, bath-system learning, or direct dark matter detection. The article therefore functions both as a review of the state-of-the-art, and as an illustration of the wide reach of applications the future of quantum microwaves will open.
https://doi.org/10.1088/2058-9565/acc4af
The following article is Open access
From counterportation to local wormholes
Hatim Salih 2023 Quantum Sci. Technol. 8 025016
Open abstract
View article, From counterportation to local wormholes
PDF, From counterportation to local wormholes
We propose an experimental realisation of the protocol for the counterfactual disembodied transport of an unknown qubit—or what we call counterportation—where sender and receiver, remarkably, exchange no particles. We employ cavity quantum electrodynamics, estimating resources for beating the classical fidelity limit—except, unlike teleportation, no pre-shared entanglement nor classical communication are required. Our approach is multiple orders of magnitude more efficient in terms of physical resources than previously proposed implementation, paving the way for a demonstration using existing imperfect devices. Surprisingly, while such communication is intuitively explained in terms of 'interaction-free' measurement and the Zeno effect, we show that neither is necessary, with far-reaching implications in support of an underlying physical reality. We go on to characterise an explanatory framework for counterportation starting from constructor theory: local wormholes. Conversely, a counterportation experiment demonstrating the traversability of space, by means of what is essentially a two-qubit exchange-free quantum computer, can point to the existence in the lab of such traversable wormholes.
https://doi.org/10.1088/2058-9565/ac8ecd
Latest articles
Open all abstracts, in this tab
The following article is Open access
Avoiding barren plateaus in the variational determination of geometric entanglement
L Zambrano et al 2024 Quantum Sci. Technol. 9 025016
Open abstract
View article, Avoiding barren plateaus in the variational determination of geometric entanglement
PDF, Avoiding barren plateaus in the variational determination of geometric entanglement
The barren plateau (BP) phenomenon is one of the main obstacles to implementing variational quantum algorithms in the current generation of quantum processors. Here, we introduce a method capable of avoiding the BP phenomenon in the variational determination of the geometric measure of entanglement for a large number of qubits. The method is based on measuring compatible two-qubit local functions whose optimization allows for achieving a well-suited initial condition from which a global function can be further optimized without encountering a BP. We analytically demonstrate that the local functions can be efficiently estimated and optimized. Numerical simulations up to 18 qubit GHZ and W states demonstrate that the method converges to the exact value. In particular, the method allows for escaping from BPs induced by hardware noise or global functions defined on high-dimensional systems. Numerical simulations with noise agree with experiments carried out on IBM's quantum processors for seven qubits.
https://doi.org/10.1088/2058-9565/ad2a16
The following article is Open access
Towards experimental classical verification of quantum computation
Roman Stricker et al 2024 Quantum Sci. Technol. 9 02LT01
Open abstract
View article, Towards experimental classical verification of quantum computation
PDF, Towards experimental classical verification of quantum computation
With today's quantum processors venturing into regimes beyond the capabilities of classical devices, we face the challenge to verify that these devices perform as intended, even when we cannot check their results on classical computers. In a recent breakthrough in computer science, a protocol was developed that allows the verification of the output of a computation performed by an untrusted quantum device based only on classical resources. Here, we follow these ideas, and demonstrate in a first, proof-of-principle experiment the verification of the output of a quantum computation using only classical means on a small trapped-ion quantum processor. We contrast this to verification protocols, which require trust and detailed hardware knowledge, as in gate-level benchmarking, or additional quantum resources in case we do not have access to or trust in the device to be tested. While our experimental demonstration uses a simplified version of Mahadev's protocol we demonstrate the necessary steps for verifying fully untrusted devices. A scaled-up version of our protocol will allow for classical verification, requiring no hardware access or detailed knowledge of the tested device. Its security relies on post–quantum secure trapdoor functions within an interactive proof. The conceptually straightforward, but technologically challenging scaled-up version of the interactive proofs, considered here, can be used for a variety of additional tasks such as verifying quantum advantage, generating and certifying quantum randomness, or composable remote state preparation.
https://doi.org/10.1088/2058-9565/ad2986
Variational quantum algorithms for simulation of Lindblad dynamics
Tasneem M Watad and Netanel H Lindner 2024 Quantum Sci. Technol. 9 025015
Open abstract
View article, Variational quantum algorithms for simulation of Lindblad dynamics
PDF, Variational quantum algorithms for simulation of Lindblad dynamics
We introduce variational hybrid classical-quantum algorithms to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables. Our methods are based on a direct representation of density matrices and quantum observables as quantum superstates. We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions. We benchmark and test the algorithms on different models and system sizes, showing their potential for utility with near-future hardware.
https://doi.org/10.1088/2058-9565/ad17d8
The following article is Open access
Experimental implementation of quantum-walk-based portfolio optimization
Dengke Qu et al 2024 Quantum Sci. Technol. 9 025014
Open abstract
View article, Experimental implementation of quantum-walk-based portfolio optimization
PDF, Experimental implementation of quantum-walk-based portfolio optimization
The application of quantum algorithms has attracted much attention as it holds the promise of solving practical problems that are intractable to classical algorithms. One such application is the recent development of a quantum-walk-based optimization algorithm approach to portfolio optimization under the modern portfolio theory framework. In this paper, we demonstrate an experimental realization of the alternating phase-shift and continuous-time quantum walk unitaries that underpin this quantum algorithm using optical networks and single photons. The experimental analysis confirms that the probability of states corresponding to high-quality solutions is efficiently amplified by increasing the number of phase-shift and quantum walk iterations. This work provides strong evidence for practical applications of quantum-walk-based algorithms such as financial portfolio optimization.
https://doi.org/10.1088/2058-9565/ad27e9
Fast generation of spin squeezing via resonant spin-boson coupling
Diego Barberena et al 2024 Quantum Sci. Technol. 9 025013
Open abstract
View article, Fast generation of spin squeezing via resonant spin-boson coupling
PDF, Fast generation of spin squeezing via resonant spin-boson coupling
We propose protocols for the creation of useful entangled states in a system of spins collectively coupled to a bosonic mode, directly applicable to trapped-ion and cavity QED setups. The protocols use coherent manipulations of the resonant spin-boson interactions naturally arising in these systems to prepare spin squeezed states exponentially fast in time. The resonance condition harnesses the full spin-boson coupling and thus avoids the slower timescales when operating in the off-resonance regime. We demonstrate the robustness of the protocols by analyzing the effects of natural sources of decoherence in these systems and show their advantage compared to more standard slower approaches where entanglement is generated with off-resonant spin-boson interactions.
https://doi.org/10.1088/2058-9565/ad2186
Review articles
Open all abstracts, in this tab
Magic state distillation and cost analysis in fault-tolerant universal quantum computation
Yiting Liu et al 2023 Quantum Sci. Technol. 8 043001
Open abstract
View article, Magic state distillation and cost analysis in fault-tolerant universal quantum computation
PDF, Magic state distillation and cost analysis in fault-tolerant universal quantum computation
Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.
https://doi.org/10.1088/2058-9565/ace6ca
The following article is Open access
Propagating quantum microwaves: towards applications in communication and sensing
Mateo Casariego et al 2023 Quantum Sci. Technol. 8 023001
Open abstract
View article, Propagating quantum microwaves: towards applications in communication and sensing
PDF, Propagating quantum microwaves: towards applications in communication and sensing
The field of propagating quantum microwaves is a relatively new area of research that is receiving increased attention due to its promising technological applications, both in communication and sensing. While formally similar to quantum optics, some key elements required by the aim of having a controllable quantum microwave interface are still on an early stage of development. Here, we argue where and why a fully operative toolbox for propagating quantum microwaves will be needed, pointing to novel directions of research along the way: from microwave quantum key distribution to quantum radar, bath-system learning, or direct dark matter detection. The article therefore functions both as a review of the state-of-the-art, and as an illustration of the wide reach of applications the future of quantum microwaves will open.
https://doi.org/10.1088/2058-9565/acc4af
Beyond quantum cluster theories: multiscale approaches for strongly correlated systems
Herbert F Fotso et al 2022 Quantum Sci. Technol. 7 033001
Open abstract
View article, Beyond quantum cluster theories: multiscale approaches for strongly correlated systems
PDF, Beyond quantum cluster theories: multiscale approaches for strongly correlated systems
The degrees of freedom that confer to strongly correlated systems their many intriguing properties also render them fairly intractable through typical perturbative treatments. For this reason, the mechanisms responsible for their technologically promising properties remain mostly elusive. Computational approaches have played a major role in efforts to fill this void. In particular, dynamical mean field theory and its cluster extension, the dynamical cluster approximation have allowed significant progress. However, despite all the insightful results of these embedding schemes, computational constraints, such as the minus sign problem in quantum Monte Carlo (QMC), and the exponential growth of the Hilbert space in exact diagonalization (ED) methods, still limit the length scale within which correlations can be treated exactly in the formalism. A recent advance aiming to overcome these difficulties is the development of multiscale many body approaches whereby this challenge is addressed by introducing an intermediate length scale between the short length scale where correlations are treated exactly using a cluster solver such QMC or ED, and the long length scale where correlations are treated in a mean field manner. At this intermediate length scale correlations can be treated perturbatively. This is the essence of multiscale many-body methods. We will review various implementations of these multiscale many-body approaches, the results they have produced, and the outstanding challenges that should be addressed for further advances.
https://doi.org/10.1088/2058-9565/ac676b
The following article is Open access
Quantum logic and entanglement by neutral Rydberg atoms: methods and fidelity
Xiao-Feng Shi 2022 Quantum Sci. Technol. 7 023002
Open abstract
View article, Quantum logic and entanglement by neutral Rydberg atoms: methods and fidelity
PDF, Quantum logic and entanglement by neutral Rydberg atoms: methods and fidelity
Quantum gates and entanglement based on dipole–dipole interactions of neutral Rydberg atoms are relevant to both fundamental physics and quantum information science. The precision and robustness of the Rydberg-mediated entanglement protocols are the key factors limiting their applicability in experiments and near-future industry. There are various methods for generating entangling gates by exploring the Rydberg interactions of neutral atoms, each equipped with its own strengths and weaknesses. The basics and tricks in these protocols are reviewed, with specific attention paid to the achievable fidelity and the robustness to the technical issues and detrimental innate factors.
https://doi.org/10.1088/2058-9565/ac18b8
Dynamically corrected gates from geometric space curves
Edwin Barnes et al 2022 Quantum Sci. Technol. 7 023001
Open abstract
View article, Dynamically corrected gates from geometric space curves
PDF, Dynamically corrected gates from geometric space curves
Quantum information technologies demand highly accurate control over quantum systems. Achieving this requires control techniques that perform well despite the presence of decohering noise and other adverse effects. Here, we review a general technique for designing control fields that dynamically correct errors while performing operations using a close relationship between quantum evolution and geometric space curves. This approach provides access to the global solution space of control fields that accomplish a given task, facilitating the design of experimentally feasible gate operations for a wide variety of applications.
https://doi.org/10.1088/2058-9565/ac4421
Trending
Trending on Altmetric
Open access
Open all abstracts, in this tab
The following article is Open access
Avoiding barren plateaus in the variational determination of geometric entanglement
L Zambrano et al 2024 Quantum Sci. Technol. 9 025016
Open abstract
View article, Avoiding barren plateaus in the variational determination of geometric entanglement
PDF, Avoiding barren plateaus in the variational determination of geometric entanglement
The barren plateau (BP) phenomenon is one of the main obstacles to implementing variational quantum algorithms in the current generation of quantum processors. Here, we introduce a method capable of avoiding the BP phenomenon in the variational determination of the geometric measure of entanglement for a large number of qubits. The method is based on measuring compatible two-qubit local functions whose optimization allows for achieving a well-suited initial condition from which a global function can be further optimized without encountering a BP. We analytically demonstrate that the local functions can be efficiently estimated and optimized. Numerical simulations up to 18 qubit GHZ and W states demonstrate that the method converges to the exact value. In particular, the method allows for escaping from BPs induced by hardware noise or global functions defined on high-dimensional systems. Numerical simulations with noise agree with experiments carried out on IBM's quantum processors for seven qubits.
https://doi.org/10.1088/2058-9565/ad2a16
The following article is Open access
Towards experimental classical verification of quantum computation
Roman Stricker et al 2024 Quantum Sci. Technol. 9 02LT01
Open abstract
View article, Towards experimental classical verification of quantum computation
PDF, Towards experimental classical verification of quantum computation
With today's quantum processors venturing into regimes beyond the capabilities of classical devices, we face the challenge to verify that these devices perform as intended, even when we cannot check their results on classical computers. In a recent breakthrough in computer science, a protocol was developed that allows the verification of the output of a computation performed by an untrusted quantum device based only on classical resources. Here, we follow these ideas, and demonstrate in a first, proof-of-principle experiment the verification of the output of a quantum computation using only classical means on a small trapped-ion quantum processor. We contrast this to verification protocols, which require trust and detailed hardware knowledge, as in gate-level benchmarking, or additional quantum resources in case we do not have access to or trust in the device to be tested. While our experimental demonstration uses a simplified version of Mahadev's protocol we demonstrate the necessary steps for verifying fully untrusted devices. A scaled-up version of our protocol will allow for classical verification, requiring no hardware access or detailed knowledge of the tested device. Its security relies on post–quantum secure trapdoor functions within an interactive proof. The conceptually straightforward, but technologically challenging scaled-up version of the interactive proofs, considered here, can be used for a variety of additional tasks such as verifying quantum advantage, generating and certifying quantum randomness, or composable remote state preparation.
https://doi.org/10.1088/2058-9565/ad2986
The following article is Open access
Experimental implementation of quantum-walk-based portfolio optimization
Dengke Qu et al 2024 Quantum Sci. Technol. 9 025014
Open abstract
View article, Experimental implementation of quantum-walk-based portfolio optimization
PDF, Experimental implementation of quantum-walk-based portfolio optimization
The application of quantum algorithms has attracted much attention as it holds the promise of solving practical problems that are intractable to classical algorithms. One such application is the recent development of a quantum-walk-based optimization algorithm approach to portfolio optimization under the modern portfolio theory framework. In this paper, we demonstrate an experimental realization of the alternating phase-shift and continuous-time quantum walk unitaries that underpin this quantum algorithm using optical networks and single photons. The experimental analysis confirms that the probability of states corresponding to high-quality solutions is efficiently amplified by increasing the number of phase-shift and quantum walk iterations. This work provides strong evidence for practical applications of quantum-walk-based algorithms such as financial portfolio optimization.
https://doi.org/10.1088/2058-9565/ad27e9
The following article is Open access
Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines
Michael Schenk et al 2024 Quantum Sci. Technol. 9 025012
Open abstract
View article, Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines
PDF, Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines
Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines (QBM) was shown to significantly improve the learning efficiency compared to classical Q-learning with the restriction, however, to discrete state-action space environments. In this paper, the FERL approach is extended to multi-dimensional continuous state-action space environments to open the doors for a broader range of real-world applications. First, free energy-based Q-learning is studied for discrete action spaces, but continuous state spaces and the impact of experience replay on sample efficiency is assessed. In a second step, a hybrid actor-critic (A-C) scheme for continuous state-action spaces is developed based on the deep deterministic policy gradient algorithm combining a classical actor network with a QBM-based critic. The results obtained with quantum annealing (QA), both simulated and with D-Wave QA hardware, are discussed, and the performance is compared to classical reinforcement learning methods. The environments used throughout represent existing particle accelerator beam lines at the European Organisation for Nuclear Research. Among others, the hybrid A-C agent is evaluated on the actual electron beam line of the Advanced Wakefield Experiment (AWAKE).
https://doi.org/10.1088/2058-9565/ad261b
The following article is Open access
A thermodynamic approach to optimization in complex quantum systems
Alberto Imparato et al 2024 Quantum Sci. Technol. 9 025011
Open abstract
View article, A thermodynamic approach to optimization in complex quantum systems
PDF, A thermodynamic approach to optimization in complex quantum systems
We consider the problem of finding the energy minimum of a complex quantum Hamiltonian by employing a non-Markovian bath prepared in a low energy state. The energy minimization problem is thus turned into a thermodynamic cooling protocol in which we repeatedly put the system of interest in contact with a colder auxiliary system. By tuning the internal parameters of the bath, we show that the optimal cooling is obtained in a regime where the bath exhibits a quantum phase transition in the thermodynamic limit. This result highlights the importance of collective effects in thermodynamic devices. We furthermore introduce a two-step protocol that combines the interaction with the bath with a measure of its energy. While this protocol does not destroy coherence in the system of interest, we show that it can further enhance the cooling effect.
https://doi.org/10.1088/2058-9565/ad26b3
The following article is Open access
An expressive ansatz for low-depth quantum approximate optimisation
V Vijendran et al 2024 Quantum Sci. Technol. 9 025010
Open abstract
View article, An expressive ansatz for low-depth quantum approximate optimisation
PDF, An expressive ansatz for low-depth quantum approximate optimisation
The quantum approximate optimisation algorithm (QAOA) is a hybrid quantum–classical algorithm used to approximately solve combinatorial optimisation problems. It involves multiple iterations of a parameterised ansatz that consists of a problem and mixer Hamiltonian, with the parameters being classically optimised. While QAOA can be implemented on near-term quantum hardware, physical limitations such as gate noise, restricted qubit connectivity, and state-preparation-and-measurement (SPAM) errors can limit circuit depth and decrease performance. To address these limitations, this work introduces the eXpressive QAOA (XQAOA), an overparameterised variant of QAOA that assigns more classical parameters to the ansatz to improve its performance at low depths. XQAOA also introduces an additional Pauli-Y component in the mixer Hamiltonian, allowing the mixer to implement arbitrary unitary transformations on each qubit. To benchmark the performance of XQAOA at unit depth, we derive its closed-form expression for the MaxCut problem and compare it to QAOA, Multi-Angle QAOA (MA-QAOA) (Herrman et al 2022 Sci. Rep.12 6781), a classical-relaxed algorithm, and the state-of-the-art Goemans–Williamson algorithm on a set of unweighted regular graphs with 128 and 256 nodes for degrees ranging from 3 to 10. Our results indicate that at unit depth, XQAOA has benign loss landscapes with local minima concentrated near the global optimum, allowing it to consistently outperform QAOA, MA-QAOA, and the classical-relaxed algorithm on all graph instances and the Goemans–Williamson algorithm on graph instances with degrees greater than 4. Small-scale simulations also reveal that unit-depth XQAOA invariably surpasses both QAOA and MA-QAOA on all tested depths up to five. Additionally, we find an infinite family of graphs for which XQAOA solves MaxCut exactly and analytically show that for some graphs in this family, special cases of XQAOA are capable of achieving a much larger approximation ratio than QAOA. Overall, XQAOA is a more viable choice for variational quantum optimisation on near-term quantum devices, offering competitive performance at low depths.
https://doi.org/10.1088/2058-9565/ad200a
The following article is Open access
Compilation of algorithm-specific graph states for quantum circuits
Madhav Krishnan Vijayan et al 2024 Quantum Sci. Technol. 9 025005
Open abstract
View article, Compilation of algorithm-specific graph states for quantum circuits
PDF, Compilation of algorithm-specific graph states for quantum circuits
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages, such as Cirq and Q#. The computation can then be implemented using a series of non-Pauli measurements on this graph state. By compiling the graph state directly instead of starting with a standard lattice cluster state and preparing it over the course of the computation, we are able to better understand the resource costs involved and eliminate wasteful Pauli measurements on the actual quantum device. Access to this algorithm-specific graph state also allows for optimisation over locally equivalent graph states to implement the same quantum circuit. The compiler presented here finds ready application in measurement based quantum computing, NISQ devices and logical level compilation for fault tolerant implementations.
https://doi.org/10.1088/2058-9565/ad1f39
The following article is Open access
Wafer-scale uniformity of Dolan-bridge and bridgeless Manhattan-style Josephson junctions for superconducting quantum processors
Nandini Muthusubramanian et al 2024 Quantum Sci. Technol. 9 025006
Open abstract
View article, Wafer-scale uniformity of Dolan-bridge and bridgeless Manhattan-style Josephson junctions for superconducting quantum processors
PDF, Wafer-scale uniformity of Dolan-bridge and bridgeless Manhattan-style Josephson junctions for superconducting quantum processors
We investigate die-level and wafer-scale uniformity of Dolan-bridge and bridgeless Manhattan-style Josephson junctions, using multiple substrates with and without through-silicon vias (TSVs). Dolan junctions fabricated on planar substrates have the highest yield and lowest room-temperature conductance spread, equivalent to in transmon frequency. In TSV-integrated substrates, Dolan junctions suffer most in both yield and disorder, making Manhattan junctions preferable. Manhattan junctions show pronounced conductance decrease from wafer center to edge, which we qualitatively capture using a geometric model of spatially-dependent resist shadowing during junction electrode evaporation. Analysis of actual junction overlap areas using scanning electron micrographs supports the model, and further points to a remnant spatial dependence possibly due to contact resistance.
https://doi.org/10.1088/2058-9565/ad199c
The following article is Open access
Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits
X Dai et al 2024 Quantum Sci. Technol. 9 025007
Open abstract
View article, Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits
PDF, Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits
Flux tunability is an important engineering resource for superconducting circuits. Large-scale quantum computers based on flux-tunable superconducting circuits face the problem of flux crosstalk, which needs to be accurately calibrated to realize high-fidelity quantum operations. Typical calibration methods either assume that circuit elements can be effectively decoupled and simple models can be applied, or require a large amount of data. Such methods become ineffective as the system size increases and circuit interactions become stronger. Here we propose a new method for calibrating flux crosstalk, which is independent of the underlying circuit model. Using the fundamental property that superconducting circuits respond periodically to external fluxes, crosstalk calibration of N flux channels can be treated as N independent optimization problems, with the objective functions being the periodicity of a measured signal depending on the compensation parameters. We demonstrate this method on a small-scale quantum annealing circuit based on superconducting flux qubits, achieving comparable accuracy with previous methods. We also show that the objective function usually has a nearly convex landscape, allowing efficient optimization.
https://doi.org/10.1088/2058-9565/ad1ecf
The following article is Open access
Efficient quantum simulation of nonlinear interactions using SNAP and Rabi gates
Kimin Park et al 2024 Quantum Sci. Technol. 9 025004
Open abstract
View article, Efficient quantum simulation of nonlinear interactions using SNAP and Rabi gates
PDF, Efficient quantum simulation of nonlinear interactions using SNAP and Rabi gates
Quantum simulations provide means to probe challenging problems within controllable quantum systems. However, implementing or simulating deep-strong nonlinear couplings between bosonic oscillators on physical platforms remains a challenge. We present a deterministic simulation technique that efficiently and accurately models nonlinear bosonic dynamics. This technique alternates between tunable Rabi and SNAP gates, both of which are available on experimental platforms such as trapped ions and superconducting circuits. Our proposed simulation method facilitates high-fidelity modeling of phenomena that emerge from higher-order bosonic interactions, with an exponential reduction in resource usage compared to other techniques. We demonstrate the potential of our technique by accurately reproducing key phenomena and other distinctive characteristics of ideal nonlinear optomechanical systems. Our technique serves as a valuable tool for simulating complex quantum interactions, simultaneously paving the way for new capabilities in quantum computing through the use of hybrid qubit-oscillator systems.
https://doi.org/10.1088/2058-9565/ad1f3b
More Open Access articles
Journal links
Submit an article
About the journal
Editorial Board
Author guidelines
Publication charges
Review for this journal
Awards
Journal collections
Pricing and ordering
Contact us
Journal information
2015-present
Quantum Science and Technology
Online ISSN: 2058-9565
IOPscience
Journals
Books
IOP Conference Series
About IOPscience
Contact Us
Developing countries access
IOP Publishing open
access policy
Accessibility
IOP Publishing
Copyright 2024 IOP Publishing
Terms and Conditions
Disclaimer
Privacy
and Cookie Policy
Publishing Support
Authors
Reviewers
Conference
Organisers
This site uses cookies. By continuing to use this
site you agree to our use of cookies.
IOP Publishing Twitter page
IOP Publishing Facebook page
IOP Publishing LinkedIn page
IOP Publishing Youtube page
IOP Publishing WeChat QR code
IOP Publishing Weibo page
欢迎来到丰富、鲜活的数据世界 | Quantum
欢迎来到丰富、鲜活的数据世界 | Quantum
官方博客
职业生涯
联络方式
全球站点
Close
Select Your Language
英语
德语
日语
韩语
法语
中文
西班牙语
Menu
产品
解决方案
资源
支持
合作伙伴
公司
官方博客
职业生涯
联络方式
Global Sites
English
Português
Deutsch
日本語
Français
中文
Español
한국어
预约演示
产品
解决方案
资源
支持
合作伙伴
公司
官方博客
职业生涯
联络方式
Global Sites
英语
德语
日语
韩语
法语
中文
西班牙语
预约演示
数据是您最重要的资产。 我们帮助您释放其价值。
为什么选择昆腾? 了解更多
时代变了,您的数据也变了。
数据是鲜活的。它不会只朝某个方向移动或停留在某个位置。有些数据需要高性能和易于访问,而有些数据则需要存档数年甚至数十年。有时数据会连续地来回移动,每次都会获得价值,并在整个数据生命周期中被重新处理和重新利用。仅仅存储您的数字数据和视频是不够的——它必须经过分析和丰富,以获得洞察力,并为您提供竞争优势。凭借数十年的专业经验,昆腾的端到端人工智能驱动数据平台不仅可以存储,还可以在整个生命周期内安全、大规模地丰富、保护和归档非结构化数据,从而释放数据的价值,推动业务向前发展。
Your Difference is in Your Data
昆腾的端到端平台使用AI对您的数据进行标记、编目和索引,使其易于查找、调用和重复使用。成千上万的客户依赖昆腾解决方案,利用其独特的数据为决策提供信息,创新新产品,改善人们的生活。
基因组学数据已经被丰富和重新利用,以推动罕见疾病的新药研究#OnQuantum
精彩案例
世界上最令人难忘的电影被编辑、动画制作、存储和修复,创造了我们分享的快乐和有影响力的时刻 #OnQuantum
精彩案例
国家基础设施的视频监控录像被采集、分析并付诸行动,以保障公民的安全#OnQuantum
精彩案例
车载数据被采集、分析,并用于创建人工智能模型,使自动驾驶汽车更安全、更智能#OnQuantum
精彩案例
银行和投资信息不受勒索软件的侵害,因此人们有理由相信他们的资产是安全的#OnQuantum
精彩案例
FAANG(脸书、苹果、亚马逊、奈飞、谷歌)公司构建了更大更好的云,以支持企业和个人备份业务以及个人数据的基础架构OnQuantum
了解更多
我们的用户
全新的一切
我们正在改变用户通过数据来推动业务的方式。
电子书
汇回基本数据的策略
新闻稿
XENON Systems 购买无数全闪存云原生解决方案来推动人工智能、电力研究和数据科学工作负载
Video
荷兰制片公司利用昆腾CatDV加速内容档案搜索
新闻稿
Amidata 扩展基于量子端到端解决方案的产品,推出基于 ActiveScale 对象存储的新云存储服
Customer Story
Amidata推出基于昆腾ActiveScale的全新云存储服务
PRESS RELEASE
MR Datentechnik新的营收来源:基于昆腾ActiveScale构建可扩展的S3兼容存储服务
视频
当今的业务挑战需要新的数据管理方法
新闻
昆腾宣布推出新的预配置ActiveScale冷存储软件包,使部署本地云资源变得简单,并释放存档数据的价值
视频
当今的业务挑战需要新的数据管理方法
网络研讨会
云遣返争论:搬还是不搬
焦点
Protect Your Entire Enterprise with DXi Edge-Core-Cloud Bundles
新闻
昆腾宣布推出新的预配置ActiveScale冷存储软件包,使部署本地云资源变得简单,并释放存档数据的价值
焦点
ActiveScale被评为领先的对象存储优胜者。
白皮书
对Myriad——现代化云原生架构技术的深入研究
白皮书
借助机器学习工作流,实现更精彩的专业内容创作
新闻
Quantum Expands Hybrid Cloud Leadership with New Features across End-to-End Unstructured Data Platform
客户故事
StorNext帮助a52——将视觉特效和动画工作效率提升到了全新的水平
焦点
选择 Quantum Myriad 的十大理由
白皮书
Limited Time Offer: Free Surveillance Infrastructure Assessment
竞争概况
Myriad与其他扩展文件和对象存储产品的对比
E-BOOK
内容管理挑战的一站式解决方案
白皮书
通过人工智能与机器学习挖掘更多的内容金矿
白皮书
通过人工智能与机器学习挖掘更多的内容金矿
重头戏
昆腾Smart NVR——能做到更多,且更为智能
用户故事
ITVNews通过CatDV系统,简化了对自身大规模归档体系的访问流程
白皮书
StorNext与ActiveScale的共同部署
让我们开始吧
预约演示
进行试用
联系我们
我们可以帮助做到什么?我需要:
提高数据密集型工作负载的性能
对我的活跃数据与冷数据,进行安全地归档
为我们的内容工作流提升性能表现
视频内容的更为方便的整理和访问
应对网络威胁的备份与数据保护办法
简化视频监控架构的复杂度
产品
解决方案
合作伙伴
支持
关于公司
投资者关系
活动
官方博客
职业生涯
联络方式
条款
隐私
道德规范
订阅中心
ForumV Community
© 2023 Quantum Corporation. All rights reserved.
For information about the categories of personal information we collect please review our privacy policy. Do Not Sell or Share My Info.
首页 | 量子物理与量子信息研究部
首页 | 量子物理与量子信息研究部
跳转到主要内容
中文English
量子物理与量子信息研究部
Explore quantum mystery, enable quantum applications!
Main Navigation
显示主导航菜单
隐藏主导航菜单
首页
研究方向
量子卫星
团队成员
新闻动态
研究进展
学术报告
论文发表
公告通知
招生信息
相关链接
中国科大实现“九章三号”光量子计算原型机
中国科大成功实现最大规模的51比特量子纠缠态制备
中国科大首次制备高相空间密度的超冷三原子分子系综
我国科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
中国科学家首次观测到费米超流中的熵波临界发散
关于我们
量子物理与量子信息研究部成立于2001年,研究部主任为潘建伟院士。研究领域为量子光学与量子信息,研究方向包括量子力学基本原理检验、光纤量子通信、自由空间量子通信、量子存储与量子中继、光学量子计算、超导量子计算、超冷原子量子模拟、量子精密测量以及相关理论研究等。我们已经搭建了众多相关实验平台,建立和发展了一整套与量子信息实验研究相关的分析探测设备和手段,研究条件具有国际先进水平。
阅读更多 关于 关于我们
新闻动态
2023-12-27
徐飞虎教授获2023年度中国科学院青年科学家奖
2023-12-20
陆朝阳教授获2023年何梁何利基金科学与技术创新奖
2023-03-18
我校成果入选2022年度中国科学十大进展
2022-12-20
中国科大实数量子力学检验实验入选2022年国际物理学十大进展
2022-12-16
中国科大成果入选2022年度国际物理学十大突破
2022-07-27
世界首颗量子微纳卫星成功发射
2022-03-01
我校成果入选2021年度中国科学十大进展
研究进展
2023-10-11
中国科大实现“九章三号”光量子计算原型机
2023-07-12
中国科大成功实现最大规模的51比特量子纠缠态制备
2023-06-07
九章光量子计算原型机求解图论问题
2023-05-26
我国科学家实现千公里无中继光纤量子密钥分发
2023-03-14
中国科大实现百兆比特率量子密钥分发
2023-02-04
中国科大实现模式匹配量子密钥分发
2022-12-02
中国科大首次制备高相空间密度的超冷三原子分子系综
学术报告
2024-03-01
燃烧诊断与燃烧反应流
2024-01-11
高速铌酸锂薄膜光电子芯片
2024-01-05
Verifiable IQP Supremacy: Constructions, Attacks, and Implementations
2023-12-22
从地球的深处仰望宇宙
2023-12-15
Quantum information processing with color centers in hexagonal boron nitride
2023-11-30
Microwave-shielded polar molecules: from ultracold chemistry to quantum matter
2023-11-23
一沙一世界:从宇宙到原子的量子隧穿
用户帐户菜单
显示主导航菜单
隐藏主导航菜单
登录
量子物理与量子信息研究部
联系管理员:ly0523 at ustc.edu.cn
量子机器学习概念 | TensorFlow Quantum
量子机器学习概念 | TensorFlow Quantum
安装
学习
简介
TensorFlow 新手?
TensorFlow
核心的开源机器学习库
针对 JavaScript
使用 JavaScript 进行机器学习开发的 TensorFlow.js
针对移动设备和 IoT 设备
针对移动设备和嵌入式设备推出的 TensorFlow Lite
针对生产环境
针对端到端机器学习组件推出的 TensorFlow Extended
API
TensorFlow (2.12)
Versions…
TensorFlow.js
TensorFlow Lite
TFX
资源
模型和数据集
由 Google 和社区构建的预训练模型和数据集
工具
由各种可助您使用 TensorFlow 的工具构成的生态系统
库和扩展程序
在 TensorFlow 基础上构建的库和扩展程序
TensorFlow 认证计划
拿下可证明您精通机器学习技术的证书,让自己脱颖而出
学习机器学习知识
帮助您掌握使用 TensorFlow 进行机器学习的基础知识教育资源
Responsible AI
帮助您在机器学习工作流中落实 Responsible AI 做法的资源和工具
社区
加入
探索参与其中的方式
论坛 ↗
TensorFlow 社区的讨论平台
群组
用户群组、兴趣小组和邮寄名单
贡献
关于贡献代码和文档的指南
选择 TensorFlow 的原因
简介
案例研究
AI 服务合作伙伴
English
Español
Español – América Latina
Français
Indonesia
Italiano
Polski
Português
Português – Brasil
Tiếng Việt
Türkçe
Русский
עברית
العربيّة
فارسی
हिंदी
বাংলা
ภาษาไทย
中文 – 简体
日本語
한국어
GitHub
Quantum
概览
指南和教程
API
安装
学习
更多
API
更多
资源
更多
概览
指南和教程
API
社区
更多
选择 TensorFlow 的原因
更多
GitHub
概览
安装
量子机器学习
TensorFlow 量子设计
教程
Hello, many worlds
MNIST 分类
量子数据
计算梯度
贫瘠高原
量子 CNN
噪声
调查工具
量子强化学习
简介
TensorFlow
针对 JavaScript
针对移动设备和 IoT 设备
针对生产环境
TensorFlow (2.12)
Versions…
TensorFlow.js
TensorFlow Lite
TFX
模型和数据集
工具
库和扩展程序
TensorFlow 认证计划
学习机器学习知识
Responsible AI
加入
论坛 ↗
群组
贡献
简介
案例研究
AI 服务合作伙伴
TensorFlow
资源
Quantum
指南和教程
量子机器学习概念
Google 的量子超越传统实验使用了 53 个嘈杂量子位,证明一台量子计算机只需 200 秒就可以完成采用现有算法的最大传统计算机需要大约 10,000 年才能完成的一项计算。这标志着嘈杂中型量子 (NISQ) 计算时代正式开启。在未来几年中,具有数十乃至数百个嘈杂量子位的量子设备有望成为现实。
量子计算
量子计算依靠量子力学的属性来计算传统计算机无法解决的问题。量子计算机使用量子位。量子位就像计算机中的常规位,只不过它有两种附加能力,即被置于叠加态和相互纠缠。
传统计算机执行确定性经典运算,也可以使用采样方法来模拟概率过程。通过利用叠加和纠缠,量子计算机可以执行难以用传统计算机大规模模拟的量子运算。利用 NISQ 量子计算的构想包括优化、量子模拟、密码学和机器学习。
量子机器学习
量子机器学习 (QML) 基于两个概念构建:量子数据和混合量子经典模型。
量子数据
量子数据是在自然或人工量子系统中出现的任何数据源。这可以是由量子计算机生成的数据,例如从用于证明 Google 的量子霸权的 Sycamore 处理器收集的样本。量子数据表现出叠加态和纠缠态,最终产生可能需要数量以指数级增长的经典计算资源来表示或存储的联合概率分布。量子霸权实验表明,可以从 2^53 个希尔伯特空间的极端复杂联合概率分布中进行采样。
NISQ 处理器生成的量子数据是嘈杂数据,而且通常在测量之前就发生纠缠。启发式机器学习技术可以创建最大程度地从嘈杂纠缠数据中提取有用经典信息的模型。TensorFlow Quantum (TFQ) 库提供了用于开发模型的基元,这类模型可以解开并归纳量子数据中的相关性,从而为改进现有量子算法或发现新的量子算法创造机会。
下面给出了可以在量子设备上生成或模拟的量子数据示例:
化学模拟 - 提取有关化学结构和动力学的信息,并将其潜在地应用于材料科学、计算化学、计算生物学和药物发现等领域。
量子物质模拟 - 对高温超导或表现出多体量子效应的其他奇特物质状态进行建模和设计。
量子控制 - 可以对混合量子经典模型进行变分训练,以执行最佳的开环或闭环控制、校准和误差抑制。这包括用于量子设备和量子处理器的错误检测与纠正策略。
量子通信网络 - 使用机器学习来区分非正交量子态,并将其应用于结构化量子中继器、量子接收器和纯化装置的设计与构造。
量子计量 - 量子增强的高精度测量(例如量子传感和量子成像)本质上是在探针这种小型量子设备上完成的,可以通过变分量子模型来设计或改进。
混合量子经典模型
量子模型可以表示和归纳包含量子力学起源的数据。由于近期的量子处理器仍然很小且嘈杂,因此量子模型无法仅使用量子处理器来归纳量子数据。NISQ 处理器必须与传统的协处理器协同工作才能生效。由于 TensorFlow 已经支持跨 CPU、GPU 和 TPU 的异构计算,因此被用作试验混合量子经典算法的基础平台。
量子神经网络 (QNN) 用于描述最好在量子计算机上执行的参数化量子计算模型。此术语通常可与参数化量子电路 (PQC) 互换。
研究
在 NISQ 时代,尚且无法在有意义的规模上实现比经典算法(例如 Shor 的分解质因数算法或 Grover 的搜索算法)更快的量子算法。
TensorFlow Quantum 的目标是帮助发现 NISQ 时代的算法,特别关注以下方面:
使用经典机器学习来增强 NISQ 算法。希望来自于经典机器学习的技术可以增强我们对量子计算的理解。在通过经典循环神经网络进行量子神经网络的元学习中,循环神经网络 (RNN) 用于发现对 QAOA 和 VQE 等算法的控制参数进行优化比简单的现成优化器更加有效。而用于量子控制的机器学习则使用强化学习来帮助减少误差并产生质量更高的量子门。
使用量子电路对量子数据进行建模。如果您有数据源的精确描述,则可使用经典方式对量子数据进行建模,但有时无法实现。要解决此问题,您可以尝试在量子计算机上建模并测量/观测重要的统计数据。量子卷积神经网络给出了一种量子电路,这种电路采用类似于卷积神经网络 (CNN) 的结构设计,可以检测物质的不同拓扑相。量子计算机保存数据和模型。传统处理器只能从模型输出中看到测量样本,而无法看到数据本身。在 Robust entanglement renormalization on a noisy quantum computer 中,作者学习使用 DMERA 模型压缩有关量子多体系统的信息。
量子机器学习的其他关注领域包括:
在量子计算机上对纯粹的经典数据进行建模。
受量子启发的经典算法。
使用量子分类器的监督式学习。
量子神经网络的自适应分层学习。
量子动力学学习。
混合量子态的生成建模。
在近期的处理器上使用量子神经网络执行分类任务。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2022-09-21。
Stay connected
博客
GitHub
哔哩哔哩
支持
Issue tracker
Release notes
Stack Overflow
Brand guidelines
Cite TensorFlow
条款
隐私权政策
ICP证合字B2-20070004号
Manage cookies
Sign up for the TensorFlow newsletter
Subscribe
English
Español
Español – América Latina
Français
Indonesia
Italiano
Polski
Português
Português – Brasil
Tiếng Việt
Türkçe
Русский
עברית
العربيّة
فارسی
हिंदी
বাংলা
ภาษาไทย
中文 – 简体
日本語
한국어