im钱包下载官网|emc2

作者: im钱包下载官网
2024-03-07 18:30:18

百度知道 - 信息提示

百度知道 - 信息提示

百度首页

商城

注册

登录

网页

资讯

视频

图片

知道

文库

贴吧采购

地图更多

搜索答案

我要提问

百度知道>提示信息

知道宝贝找不到问题了>_

该问题可能已经失效。返回首页

15秒以后自动返回

帮助

 | 意见反馈

 | 投诉举报

京ICP证030173号-1   京网文【2023】1034-029号     ©2024Baidu  使用百度前必读 | 知道协议 

为什么E=mC2 - 知乎

为什么E=mC2 - 知乎切换模式写文章登录/注册为什么E=mC2GCGA管理学1934年,爱因斯坦在黑板上推导狭义相对论。爱因斯坦最著名的方程式E=mc²,是科学史上最广为人知的一个公式,尽管并不是所有人都深知其含义。该公式表示一个物体的能量等于物体的质量乘以光速的平方。根据狭义相对论,质量和能量是等价的,并且是同一个物体的两种不同表现。物质都具有质量:大到星系、恒星和行星,小到分子、原子和基本粒子。不管它们有多小,所有我们已知的物质都有基本的性质:质量。也就是说即使它不再运动,或者让它慢慢减速直至完全的静止,它仍然会影响着宇宙中其它的物体。每个单独的质量对宇宙中其它的物体都具有引力作用,不管距离多远。它试图吸引所有其它的物体,但也经历着被所有其它的物体所吸引。此外,它的存在也具有一定的能量。描述了大质量物体(比如太阳和地球)是如何影响时空的构造。但是,这并不意味着只有具有质量的物体才能具备能量。在宇宙中也有完全没有质量的粒子,比如光子。光子也携带一定量的能量,它们可以与其它的物体作用,并被吸收,以及传递能量给其它的物体。足够能量的光可以加热物体,并传递额外的动能(和速度)给它们。光子会把原子中的电子踢到更高的能量等级,或者完全电离它们,这都取决于光子的能量。此外,无质量粒子(比如光子)的能量只由它们的频率和波长决定,两者的乘积等于无质量粒子的速度,即光速。波长越长,频率越小,能量也越低。反之短波长意味着拥有更高的频率和能量。波长越长的光子能量越小。但是所有的光子,不论其波长和能量为何,它们的速度都一样,即光速。在物理上,我们把能量当做完成某项任务的能力,我们称之为做功的能力。那么有质量粒子和无质量粒子之间的能量有什么关联?我们可以想象,将一个电子(物质)和一个正电子(反物质)相互碰撞,它们会湮灭并产生无质量粒子(比如两个光子)。但是为什么两个光子的能量等于电子(和正电子)的质量乘以光速的平方?为什么是E=mc²,而不是E=2mc²,或者是其它常数(¼ 或 π 等)?爱因斯坦在讲堂上推导狭义相对论 @1934年。有趣的是,如果狭义相对论是正确的,那么方程式必须是E=mc²。为什么是会这样?要回答这个问题,我们先开始想象在你空间中有一个完全静止的盒子,在盒子的两边分别有两面镜子,有一个光子在盒子里朝着一端的镜子传播。如下图:思想实验的装置:一个具备动量和能量的光子在一个带有质量M的静止的(动量=0,动能=0)盒子里运动。(© E.Siegel)最初,这个盒子完全的静止,但是由于光子携带能量(和动量),当光子撞上盒子一端的镜子时就会反弹,盒子则开始向光子最初的传播方向移动。光子朝另一端的镜子再次反弹折回,使盒子的动量再次改变为零。光子将不断的来回反弹,因此盒子一半的时间向前移动,一半的时间保持静止。换句话,平均上这个盒子是在移动的,由于盒子拥有质量,它就具有一定的动能,这一切都是因为光子的能量。但更重要的是动量(是描述一个物体运动的量)这个概念。光子具有动量,其关系很简单明了:波长越短、能量越高,因此动量也越大。光子的能量取决于波长:波长越大能量越小,波长越短能量越大。为了更好的理解,我们来做一个思想实验。我需要你想象,最初当光子自身在运动时会发生什么。它具有一定的能量以及一定的动量,这两者都必须是守恒的。现在光子的能量由它的波长决定,盒子的能量由静止质量决定。此外光子具有整个系统的动量,也就是盒子的动量为零。现在光子撞上盒子,并暂时被吸收。动量和能量两者都必须守恒,它们是宇宙中最基本的守恒定律。如果光子被吸收,这意味着只有一个方法能保持动量守恒:盒子获得了一定的速度往光子移动的方向移动。吸收了光子后盒子的能量(KE)和动量(M'v)。如果盒子没有在该作用中获得了额外质量,能量和动量就不可能守恒。(© E.Siegel)现在,我们可以问自己,盒子的能量是多少?结果是我们熟知的动能公式:KE = ½mv²,m是盒子的质量,v是盒子的速度。但是,当我们比较现在盒子的能量与光子被吸收之前的能量,我们发现盒子现在的能量不够。难道是已知的物理定律在哪里错了?并不是,有一个非常简单的解决方法。盒子/光子系统的能量是盒子的静止能量加上盒子的动能再加上光子的能量。当盒子吸收光子时,大部分光子的能量转换成了盒子的质量。一旦盒子吸收光子,它的质量跟它与光子作用之前不同(增加了)。当盒子重新辐射出光子时,能量和动量仍然必须守恒。(© E.Siegel)当盒子重新辐射出光子(往相反的方向)时,它获得了更多的动量和速度(为了平衡往反方向运动具有负动量的光子),甚至更多的动能,但是它必须失去一定的静止质量来补偿。在一点点的数学计算(文末阅读原文提供了相关背景的链接),你就会发现为了得到能量守恒和动量守恒,我们最终会得到质能关系E=mc²。如果在方程式加上其它常数,就得不到守恒,每次吸收或辐射光子的时候都会得到会失去能量。直到1930年,当反物质最终被发现的时候,物理学家得到了E=mc²的第一次验证,在这之前是上述的思想实验帮助我们得到的该结果。能量守恒与动量守恒是我们现在生活在这个宇宙所要求的,这也正是为什么E=mc²。发布于 2016-07-19 09:17​赞同 36​​8 条评论​分享​喜欢​收藏​申请

emc(EMC公司)_百度百科

EMC公司)_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心emc是一个多义词,请在下列义项上选择浏览(共13个义项)添加义项收藏查看我的收藏0有用+10emc播报讨论上传视频EMC公司EMC(易安信)为一家美国信息存储资讯科技公司,主要业务为信息存储及管理产品、服务和解决方案。EMC公司创建于1979年,总部在马萨诸塞州霍普金顿市。2003年,EMC收购了VMware。2015年10月,EMC被DELL收购。EMC公司的股票符号是EMC,在纽约股票交易所交易,并且是S&P 500成份股之一。EMC作为全球领导厂商,帮助企业和服务提供商实现运营转型,交付IT即服务。这一转型的基础是云计算。EMC通过创新的产品和服务,加速云计算之旅,帮助IT部门以更灵活、更可信和成本效益更高的方式,存储、管理、保护和分析他们的最宝贵的资产——信息。2015年10月12日,戴尔与数据存储公司EMC的并购宣布完成,最终戴尔以670亿美元收购了EMC。 [1]2016年8月31日,戴尔公司(Dell Inc.)周二表示,已取得中国监管机构的批准,计划于9月7日完成收购EMC Corp. (EMC)的交易 [2]。中文名易安信外文名EMC所处国家美国属    性信息存储资讯科技公司官    网http://www.emc.com/目录1发展历程2被收购后影响3公司分布4公司规模5主要产品发展历程播报编辑EMC 于1979年由1961年毕业于美国东北大学的Richard Egan [10] [14]和Roger Marino [11-13]成立在美国麻州Hopkinton市,1989年开始进入企业数据储存市场。二十多年来,EMC全心投注在各项新的储存技术,已获得了1,300个已通过或审核中的储存技术专利。无论是全球外接RAID储存系统、网络储存亦或是储存管理软件等储存专业领域,EMC均是业界公认的领导厂商。EMC 在全球超过50个国家有100个以上的分公司及经销伙伴,拥有全球最大且最专业的储存销售与服务之团队,带给客户最迅速的响应服务,客户服务满意度高达96.7%。EMC 于1988年进入亚太地区,在12个国家设有分公司或办事处;1999年在台湾设立分公司,客户群涵盖金融、电信、制造与政府等各领域。美国存储设备及软件开发商EMC共同创始人理查德·埃根(Richard Egan)于2009年8月28日在波士顿家里去世,享年73岁。他曾担任过美国驻爱尔兰大使。在埃根领导下,EMC于1986年成为上市公司。1998年,埃根当选EMC董事长。在1992年之前,埃根还曾担任过该公司总裁及CEO等职位。如今,EMC已经成为在全球拥有约4万员工的科技巨头。创建于1979 年,总部在马萨诸塞州霍普金顿市的EMC 公司(NYSE:EMC),是全球第六大企业软件公司,全球信息基础架构技术与解决方案的领先开发商与提供商,致力于帮助我们的客户加速迈上私有云之旅。在信息存储领域,多年来EMC继续保持着全球第一的领先优势。作为美国财富五百强之一,2009年全球研发投入高达14亿美元,EMC公司在全世界拥有超过四万二千名员工,在全球60个国家或地区拥有分支机构。EMC中国研发中心于2006年11月2日正式落成,分别位于上海和北京,主要负责EMC的核心软件与硬件的开发工作。其主要目标是向EMC业务部门提供先进的软件与硬件开发和质量保证功能,为中国、亚太地区和全球的客户提供世界一流的产品和服务。同时,EMC在北京也建立了基础研究实验室,从事着EMC全球领先科技包括云计算及虚拟化技术的基础研究工作。2009年7月,EMC中国研发中心正式升级为EMC中国卓越研发集团,下设存储技术研发基地、云计算研发基地、信息管理研发基地、中国实验室、全球解决方案中心和全球客户技术支持中心六大职能部门。EMC在北京、上海、广州、成都、南京、西安、武汉、沈阳、福州、乌鲁木齐、济南、杭州、昆明、重庆、青岛,郑州设立了共16家分公司。并在北京、上海、广州、成都、深圳、香港和台湾七地建立了解决方案中心。为了帮助用户更好地掌握和利用EMC产品和服务,EMC在全国各地设立了35家服务中心,并于2004年开通了全球支持中心中文服务热线。EMC还在香港建立配送中心,加快市场响应速度,提高客户满意度。2015年6月19日,EMC在对其XtremIO和ScaleIO系统推出了软件插件,利用简易的Docker存储容器实现共享存储。 [3]Dell将以每股33.15美元收购EMC,包含现金和特殊股票,其中现金部分占每股24.05美元。交易总额达近670亿美元,是科技史上最大并购。VMware维持独立公开上市。根据协议,EMC公司股东将获得每股24.05美元现金,加EMC在VMware业务部分经济利益的追踪股票。根据交易结束时EMC流通股票的估计数字,EMC股东预期从每股EMC股票收到约0.111股新的追踪股票。举例来说,假设2015年10月7日星期三,VMware盘中成交量加权平均的每股追踪股票估值为81.78美元,EMC股东将收到每股33.15美元的综合价值,交易的总价值将约为670亿美元。由于两支股票不同的特性和权益,跟踪股票的价值可能会随着VMware股票的价格而变化。 [4]被收购后影响播报编辑EMC用户担心戴尔的收购451 Research LLC的分析师Dan Harrington、Michelle Bailey以及Simon Robinson表示在戴尔、EMC合并一事中用户的处境被忽略了,各方只关注了金融数字方面的元素。根据451 Research调查显示,有40%的EMC用户对收购持悲观态度,在戴尔这面有15%。受访的447名企业购买者中,有1/4的用户对戴尔收购后是否依然购买产生犹豫。451分析师分析这将给更多厂商带来机会,原先选用EMC的用户可能会考虑其他厂商的方案。调查显示,39%的受访者认为两家公司都会从本次收购中获益,不过27%的受访者担心这会分散两家公司。戴尔需要极力获取EMC用户的信任,毕竟之前他们将戴尔视作低端PC供应商。如果戴尔能给新的客户群提供一个明确的产品路线图,可能会有所缓解。对网络专业人员来说,路线图同样重要,是对VMware未来建立信任的关键所在。 [5]公司分布播报编辑地区地址邮编美国(总部)EMC Corporation 176 South Street Hopkinton , MA 01748 United States01748中国北京15/F, Hyundai Motor Tower No. 38 Xiaoyun Road Chaoyang District Beijing100027中国上海23 and 24 F, Xinmei Union Square No. 999 Pudong South Road Shanghai200120中国广州Unit 7401, Level 74, CITIC Plaza, 233 Bei Road Tianhe District Guangzhou510613中国南京1752-1753, World Trade Center No. 2 Han Zhong Lu Nanjing210005公司规模播报编辑排名公司财富500强排名2007年净利润增幅1微软44141亿美元12%2IBM15104亿美元10%3思科7173亿美元31%4惠普1473亿美元17%5英特尔6070亿美元38%6甲骨文13743亿美元26%7谷歌15042亿美元37%8苹果10335亿美元76%9高通29733亿美元34%10戴尔3429亿美元14%11德州仪器18527亿美元39%12康宁41722亿美元90%13应用材料27017亿美元13%14EMC20117亿美元36%EMC在全球拥有53500多名员工,在全球85个国家有400多个办事处和众多合作伙伴。我们拥有世界上最大的销售和服务力量,主要从事信息基础架构工作,我们与全球的技术、外包、系统集成、服务和分销合作伙伴网络紧密合作。EMC(纽约证交所代码:EMC)是一家在纽约证券交易所上市的公司,是标准普尔500指数中的一个组成部分。2011年,EMC入选北美道琼斯可持续发展指数(DJSI),其目的是在全球范围内跟踪以可持续发展为主导的领先公司的财务业绩。我们致力于以对社会和环境负责任的方式行事,在当地社区和全球社区中扮演细心周到邻居的角色。我们在区域性最佳工作地的评比当中获得的分数较高。2010年,EMC财年综合收入达到创纪录的170亿美元。EMC在纽约股票交易所交易,是标准普尔指数的成份股之一。2011年,EMC名列美国《财富》计算机行业最受尊敬公司第二位、美国《财富》500强企业152位。合并EMC后,戴尔将摇身一变,由一个主要为中小企业提供服务的IT商瞬间变成能够服务大型企业的厂商,有分析师说道。从戴尔网络组合产品角度来看,戴尔将会将其服务器、网络与EMC的存储结合在一起,面向数据中心销售超融合系统。这些系统很可能通过VMware、思科和EMC的VCE联合进行出售。三家厂商在2009年建立合作销售虚拟化、网络和存储,并打包为企业建设私有云。 [6]主要产品播报编辑EMC的主要产品为企业级服务器存储硬件和软件,以及与存储相关的网络产品。主要有以下的产品:高端存储EMC高端存储主要为Symmetrix系列和VNX系列,Symmetrix系列主要有VMAX ,VMAXe,DMX-4,DMX-3。VNX系列主要有VNX和VNXe两种产品,具体型号有VNX5100,VNX5300,VNX5500,VNX5700和VNX7500.中端存储EMC中端存储主要为CLARiiON系列,主要有CX3、CX4和AX4等型号。NAS存储NAS存储主要有NS120,NS480,NS960等型号。云备份企业级云备份系统主要有Mozy等产品。Virtustream2015年10月,EMC公司和VMware宣布,通过结合其各自的云能力,以及现有的Virtustream云产品,计划打造EMC联邦全新的云服务业务,新业务将在Virtustream品牌下运营。Virtustream将由VMware和EMC联合拥有,由Virtustream首席执行官Rodney Rogers领导。双方正在敲定交易的最终协议。从2016年第一季度开始,Virtustream的财务业绩将整合至VMware的财务报表中。网络拓补图Virtustream将集成这些资产,为客户提供统一的基础设施即服务产品,旨在通过一个包含全方位服务和部署选项的产品组合,支持完整的业务工作负载。该业务将集成现有的本地EMC联邦私有云部署,并将其扩展至公共云中,让开发者、管理者、架构师和终端用户保持共同的使用体验。Virtustream的云服务将通过合作伙伴直接交付给客户。 [7]XtremIO在2013年11月,EMC就已经正式发布了one-brick、two-brick和four-brick配置的XtremIO X-Brick阵列。每个brick包含10TB或20TB的闪存空间。而新的Starter X-Brick包含有5TB或是10TB闪存空间。考虑最大容量的情形,新的six-X-Brick集群拥有12个活跃的控制器,通过冗余磁盘阵列技术的使用,能够带来90TB的初始容量。EMC在2014年7月扩展了它的XtremIO全闪存阵列平台,新增了入门级配置Starter X-Brick,规模可达到6个节点,同时还有线内压缩、静态数据加密和可写快照技术的集成 [8]。DSSD D5DSSD D5可以提供高达10,000,000的IOPS,延迟仅为100微秒,带宽则可以达到每秒100GB,5机柜配置的裸存储空间则为144TB。该系统可以被最多48个直连客户端进行冗余访问。它采用了dual-ported PCIe Gen 3以及NVMe服务器闪存技术。EMC在搭建D5闪存模块时还采用了裸NAND颗粒。每台D5包括36个闪存模块,可用空间为36TB、72TB或者144TB。在可靠性和可用性方面则提供了DSSD专有的Cubic RAID、动态损耗均衡、闪存物理控制以及系统闲时垃圾回收等技术。 [9]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

Just a moment...

a moment...Enable JavaScript and cookies to continue

E = mc² | Equation, Explanation, & Proof | Britannica

E = mc² | Equation, Explanation, & Proof | Britannica

Search Britannica

Click here to search

Search Britannica

Click here to search

Login

Subscribe

Subscribe

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

On This Day

One Good Fact

Dictionary

New Articles

History & Society

Lifestyles & Social Issues

Philosophy & Religion

Politics, Law & Government

World History

Science & Tech

Health & Medicine

Science

Technology

Biographies

Browse Biographies

Animals & Nature

Birds, Reptiles & Other Vertebrates

Bugs, Mollusks & Other Invertebrates

Environment

Fossils & Geologic Time

Mammals

Plants

Geography & Travel

Geography & Travel

Arts & Culture

Entertainment & Pop Culture

Literature

Sports & Recreation

Visual Arts

Companions

Demystified

Image Galleries

Infographics

Lists

Podcasts

Spotlights

Summaries

The Forum

Top Questions

#WTFact

100 Women

Britannica Kids

Saving Earth

Space Next 50

Student Center

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

E = mc2

Table of Contents

E = mc2

Table of Contents

Introduction

References & Edit History

Related Topics

Videos

Related Questions

Why does physics work in SI units?

Is mathematics a physical science?

What is kinetic energy?

What are some ways in which the kinetic energy of an object is determined?

Which units of energy are commonly associated with kinetic energy?

Read Next

Celebrating the Birth of a Genius

What's the Difference Between Speed and Velocity?

All 119 References in “We Didn’t Start the Fire,” Explained

Will Light-Speed Space Travel Ever Be Possible?

Celebrating the Birth of a Genius

Discover

Inventors and Inventions of the Industrial Revolution

Ten Days That Vanished: The Switch to the Gregorian Calendar

What Did Cleopatra Look Like?

9 of the World’s Deadliest Snakes

Leap Day, February 29

How Many Electoral College Votes Does Each U.S. State Have?

12 Greek Gods and Goddesses

Home

Science

Physics

Matter & Energy

Science & Tech

E = mc2

equation

Actions

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/science/E-mc2-equation

Give Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Public Broadcasting Corporation - NOVA - The Legacy of E = mc2

Stanford University - Computer Science Department - The Simplest Derivation of E = mc2

Live Science - Why does E=mc^2?

Physics LibreTexts - E=mc²

Print

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/science/E-mc2-equation

Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Public Broadcasting Corporation - NOVA - The Legacy of E = mc2

Stanford University - Computer Science Department - The Simplest Derivation of E = mc2

Live Science - Why does E=mc^2?

Physics LibreTexts - E=mc²

Written by

Sidney Perkowitz

Charles Howard Candler Professor of Physics Emeritus, Emory University, Atlanta. Author of Empire of Light, Universal Foam, Hollywood Science, Slow Light, and others.

Sidney Perkowitz

Fact-checked by

The Editors of Encyclopaedia Britannica

Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica

Last Updated:

Feb 16, 2024

Article History

Table of Contents

Category:

Science & Tech

Key People:

Albert Einstein

(Show more)

Related Topics:

mass

kinetic energy

special relativity

speed of light

mass-energy equivalence

(Show more)

On the Web:

Stanford University - Computer Science Department - The Simplest Derivation of E = mc2 (Feb. 16, 2024)

(Show more)

See all related content →

E = mc2, equation in German-born physicist Albert Einstein’s theory of special relativity that expresses the fact that mass and energy are the same physical entity and can be changed into each other. In the equation, the increased relativistic mass (m) of a body times the speed of light squared (c2) is equal to the kinetic energy (E) of that body.

Explaining E = mc2Brian Greene kicks off his Daily Equation video series with Albert Einstein's famous equation E = mc2.(more)See all videos for this articleIn physical theories prior to that of special relativity, mass and energy were viewed as distinct entities. Furthermore, the energy of a body at rest could be assigned an arbitrary value. In special relativity, however, the energy of a body at rest is determined to be mc2. Thus, each body of rest mass m possesses mc2 of “rest energy,” which potentially is available for conversion to other forms of energy. The mass-energy relation, moreover, implies that, if energy is released from the body as a result of such a conversion, then the rest mass of the body will decrease. Such a conversion of rest energy to other forms of energy occurs in ordinary chemical reactions, but much larger conversions occur in nuclear reactions. This is particularly true in the case of nuclear fusion reactions that transform hydrogen to helium, in which 0.7 percent of the original rest energy of the hydrogen is converted to other forms of energy. Stars like the Sun shine from the energy released from the rest energy of hydrogen atoms that are fused to form helium. Sidney Perkowitz The Editors of Encyclopaedia Britannica

ER 膜蛋白复合亚基 2(EMC2)基因 | MCE

ER 膜蛋白复合亚基 2(EMC2)基因 | MCE

— Master of Bioactive Molecules

最近搜索:

致电400-820-3792

登录 | 注册

My Account

或联系

微信客服 |

在线客服

购物车 (0)

United States

Canada

United Kingdom

Australia

China

Germany

France

Japan

Korea South

Switzerland

Algeria

Argentina

Austria

Belgium

Brazil

Chile

Croatia

Czech Republic

Denmark

Finland

Hong Kong, China

Hungary

India

Iraq

Ireland

Israel

Italy

Lebanon

Luxembourg

Malaysia

Mexico

Morocco

Netherlands

New Zealand

Norway

Pakistan

Peru

Philippines

Poland

Portugal

Qatar

Russia

Saudi Arabia

Serbia

Singapore

Slovakia

Slovenia

South Africa

Spain

Sweden

Taiwan, China

Thailand

Tunisia

Turkey

Ukraine

Other Countries

信号通路

首页

所有产品

一站式药筛

重组蛋白

试剂盒

联系我们

技术服务

资源中心

Anti-infection抗感染ADC Related抗体偶联药物相关Apoptosis凋亡Autophagy自噬Cell Cycle/DNA Damage细胞周期/DNA 损伤Cytoskeleton细胞骨架Epigenetics表观遗传学GPCR/G ProteinG 蛋白偶联受体/G 蛋白Immunology/Inflammation免疫及炎症JAK/STAT SignalingJAK/STAT 信号通路MAPK/ERK PathwayMAPK/ERK 信号通路Membrane Transporter/Ion Channel跨膜转运Metabolic Enzyme/Protease代谢酶/蛋白酶Neuronal Signaling神经信号通路NF-κBNF-κB 信号通路PI3K/Akt/mTORPI3K/Akt/mTOR 信号通路PROTAC蛋白降解靶向嵌合体Protein Tyrosine Kinase/RTK蛋白酪氨酸激酶Stem Cell/Wnt干细胞及 Wnt 通路TGF-beta/SmadTGF-beta/Smad 信号通路Vitamin D Related/Nuclear Receptor维生素 D 相关/核受体Others其他Anti-infectionAntibioticArenavirusBacterialBeta-lactamaseCMVDengue virusEBVEnterovirusFilovirusFlavivirusFungalHBVHCVHCV ProteaseHIVHIV ProteaseHPVHSVInfluenza VirusOrthopoxvirusParasitePenicillin-binding protein (PBP)More...Antibody-drug Conjugate/ADC RelatedADC AntibodyADC CytotoxinADC LinkerAntibody-Drug Conjugates (ADCs)Drug-Linker Conjugates for ADCPROTAC-Linker Conjugates for PACApoptosisApoptosisBcl-2 Familyc-MycCaspaseCuproptosisDAPKFerroptosisFKBPGlutathione PeroxidaseIAPMDM-2/p53NecroptosisParaptosisPKDPyroptosisRIP kinaseSurvivinThymidylate SynthaseTNF ReceptorAutophagyAtg4ATTECsAUTACsAutophagyBeclin1FKBPLRRK2MitophagyULKCell Cycle/DNA DamageAntifolateAPCATF6ATM/ATRAurora KinaseCasein KinaseCDKCheckpoint Kinase (Chk)ClpPCRISPR/Cas9Cyclin G-associated Kinase (GAK)DeubiquitinaseDNA Alkylator/CrosslinkerDNA StainDNA-PKDNA/RNA SynthesisEarly 2 Factor (E2F)EndonucleaseEukaryotic Initiation Factor (eIF)G-quadruplexHaspin KinaseHDACMore...CytoskeletonArp2/3 ComplexDynaminGap Junction ProteinIntegrinKinesinMicrotubule/TubulinMps1MyosinPAKROCKEpigeneticsAMPKAurora KinaseDNA MethyltransferaseEpigenetic Reader DomainGlycosyltransferaseHDACHistone AcetyltransferaseHistone DemethylaseHistone MethyltransferaseHuRJAKMethionine Adenosyltransferase (MAT)METTL3MicroRNAPARPPKCProtein Arginine DeiminaseSF3B1SirtuinSmall Interfering RNA (siRNA)TET ProteinWDR5GPCR/G Protein5-HT ReceptorAdenylate CyclaseAdrenergic ReceptorAmylin ReceptorAngiotensin ReceptorApelin Receptor (APJ)ArrestinBombesin ReceptorBradykinin ReceptorCannabinoid ReceptorCaSRCCRCGRP ReceptorChemerin ReceptorCholecystokinin ReceptorCRFRCXCREBI2/GPR183Endothelin ReceptorFormyl Peptide Receptor (FPR)Free Fatty Acid ReceptorG protein-coupled Bile Acid Receptor 1More...Immunology/InflammationAIM2ALCAM/CD166AP-1ArginaseAryl Hydrocarbon ReceptorBCL6CCRCD19CD2CD20CD22CD276/B7-H3CD28CD3CD38CD6CD73CD74Complement SystemCOXCTLA-4CX3CR1More...JAK/STAT SignalingEGFRJAKPimSTATMAPK/ERK PathwayERKJNKKLFMAP3KMAP4KMAPKAPK2 (MK2)MEKMixed Lineage KinaseMNKp38 MAPKRafRasRibosomal S6 Kinase (RSK)Membrane Transporter/Ion ChannelApical Sodium-Dependent Bile Acid TransporterAquaporinATP SynthaseBCRPCalcium ChannelCalmodulinCFTRChloride ChannelCRAC ChannelCRM1EAATFATPFerroportinGABA ReceptorGLUTGlyTHCN ChanneliGluRMonoamine TransporterMonocarboxylate TransporterNa+/Ca2+ ExchangerNa+/H+ Exchanger (NHE)More...Metabolic Enzyme/Protease11β-HSD15-PGDH17β-HSD5 alpha ReductaseAcetolactate Synthase (ALS)Acetyl-CoA CarboxylaseAcyltransferaseADAMTSAdiponectin ReceptorAldehyde Dehydrogenase (ALDH)Aldose ReductaseAminoacyl-tRNA SynthetaseAminopeptidaseAmylasesAngiotensin-converting Enzyme (ACE)ArginaseATGLATP Citrate LyaseCarbonic AnhydraseCarboxypeptidaseCathepsinCeramidaseMore...Neuronal Signaling5-HT ReceptorAAK1Adrenergic ReceptorAmyloid-βBeta-secretaseCalcineurinCalcium ChannelCaMKCannabinoid ReceptorCGRP ReceptorCholecystokinin ReceptorCholinesterase (ChE)COMTFAAHGABA ReceptorGlucosylceramide Synthase (GCS)GlyTGPR119GPR139GPR55Histamine ReceptorHuntingtinMore...NF-κBIKKKeap1-Nrf2MALT1NF-κBRANKL/RANKReactive Oxygen SpeciesPI3K/Akt/mTORAktAMPKATM/ATRDNA-PKGSK-3MELKmTORPDK-1PI3KPI4KPIKfyvePIN1PTENPROTACATTECsAUTACsE3 Ligase Ligand-Linker ConjugatesLigands for E3 LigaseLigands for Target Protein for PROTACLYTACsMolecular GluesPROTAC LinkersPROTAC-Linker Conjugates for PACPROTACsSNIPERsTarget Protein Ligand-Linker ConjugatesProtein Tyrosine Kinase/RTKAck1Anaplastic lymphoma kinase (ALK)Bcr-AblBMX KinaseBRKBtkc-Fmsc-Kitc-Met/HGFRDiscoidin Domain ReceptorDYRKEGFREphrin ReceptorFAKFGFRFLT3GDNF ReceptorIGF-1RInsulin ReceptorItkJAKPDGFRMore...Stem Cell/WntCasein KinaseERKGliGSK-3HedgehogHippo (MST)JAKNotchOct3/4OrganoidPKAPKGPorcupineROCKsFRP-1SmoSTATTGF-beta/SmadWntYAPβ-cateninγ-secretaseTGF-beta/SmadPKAPKCROCKTGF-beta/SmadTGF-β ReceptorVitamin D Related/Nuclear ReceptorAndrogen ReceptorConstitutive Androstane ReceptorEstrogen Receptor/ERRGlucocorticoid ReceptorLXRMineralocorticoid ReceptorNuclear Hormone Receptor 4A/NR4APPARProgesterone ReceptorRAR/RXRREV-ERBRORThyroid Hormone ReceptorVD/VDROthersAmino Acid DerivativesBiochemical Assay ReagentsFluorescent DyeIsotope-Labeled CompoundsOxidative PhosphorylationOthers

MCE 信号通路

寡核苷酸同位素标记物天然产物荧光染料抗体抑制剂多肽产品生化试剂抗体酶基因

研究领域

CancerCardiovascular DiseaseEndocrinologyInfectionInflammation/ImmunologyMetabolic DiseaseNeurological DiseaseOthers

化合物筛选库

已知活性化合物库

•生物活性化合物库

老药新用化合物库系列

•FDA 上市库

•老药新用化合物库

天然产物化合物库系列

•天然产物库

•天然产物类似物库

代谢化合物库系列

•人内源性代谢物库

疾病相关化合物库

信号通路化合物库系列

片段化合物库系列

类药多样性化合物库系列

•50K Diversity Library

•5K Scaffold Library

•3D Diverse Fragment Library

虚拟筛选

•50K Virtual Diversity Library

•10M Virtual Diversity Library

重组蛋白

Cytokines and Growth FactorsImmune Checkpoint ProteinsCAR-T related ProteinsCD AntigensFc ReceptorsReceptor ProteinsEnzymes & RegulatorsComplement SystemUbiquitin Related ProteinsViral ProteinsBiotinylated Proteins Fluorescent-labeled ProteinsGMP-grade ProteinsAnimal-free Recombinant Proteins

重组蛋白定制

定制合成服务

ADC 相关定制服务

PROTAC 相关定制服务

MCE 试剂盒

分子生物学 •核酸电泳•载体构建•核酸提取与纯化•限制性核酸内切酶•耗材•聚合酶链式反应 (PCR, qPCR)•反转录试剂盒 (RT-PCR)蛋白生物学 •蛋白样本制备•蛋白纯化•蛋白电泳、WB细胞生物学 •细胞培养•细胞分析•3D 细胞培养

点击化学 (Click Chemistry)

GMP Small Molecules

诱导疾病模型产品

标准品

化合物库

生物活性化合物库

•已知活性化合物库

•老药新用化合物库系列

•代谢化合物库系列

•根据产品特点分类

•根据产品结构分类

•信号通路化合物库系列

•疾病相关化合物库

天然产物化合物库系列

•天然产物筛选库

•按照天然产物结构分类

•中药相关化合物库

片段化合物库系列

类药多样性化合物库系列

定制化合物库

虚拟筛选

筛选技术与服务

•基于细胞表型的活性筛选

•离子通道筛选服务

•SPR 检测服务

•分子动力学模拟

•激酶谱筛选

•GPCR 靶向药物筛选

•核受体药物筛选

•亲和质谱药物筛选

•DEL合成与筛选

•代谢组学分析检测服务

先导化合物优化

设备耗材

Cytokines and Growth Factors细胞因子和生长因子Immune Checkpoint Proteins免疫检查点蛋白CAR-T related ProteinsCAR-T 相关蛋白CD AntigensCD 抗原Fc ReceptorsFc 受体蛋白Receptor Proteins受体蛋白Enzymes & Regulators酶和调节子Complement System补体系统Ubiquitin Related Proteins泛素相关蛋白Viral Proteins病毒蛋白Biotinylated Proteins生物素标记蛋白 Fluorescent-labeled Proteins荧光标记蛋白GMP-grade ProteinsGMP 级蛋白Animal-free Recombinant Proteins无动物成分重组蛋白Others其他View MoreCytokines and Growth FactorsInterleukin & ReceptorsInterferon & ReceptorsChemokine & ReceptorsTNF SuperfamilyCSF & ReceptorsTGF-beta SuperfamilyPDGFs & PDGFRsVEGF & VEGFREGF SuperfamilyFGF FamilyHGF & ReceptorsNeurotrophic FactorsEphrin/Eph FamilyAngiopoietinsIGF familyPeptide Hormone & NeuropeptidesImmune Checkpoint ProteinsInhibitory Checkpoint MoleculesStimulatory Immune Checkpoint MoleculesButyrophilinsCAR-T related ProteinsB Cell Maturation Antigen (BCMA)FLK-1/VEGFR-2B7-H3CD4CD19CD123CD138/Syndecan-1Epithelial Cell Adhesion Molecule (EpCAM)Folate Receptor 1GPC-3Guanylate Cyclase 2CErbB2/HER2ErbB3/HER3c-Met/HGFRMSLNCA-125ROR1CEACAM-5Natural Killer Group 2, Member D (NKG2D)Prostate Specific Membrane AntigenCRACC/SLAMF7TROP-2Siglec-6Folate Receptor alpha (FR-alpha)CD33CD70CD138/Syndecan-1CD138/Syndecan-1Nectin-4Carbonic Anhydrase 9 (CA IX)EGFRFLK-1/VEGFR-2CD7CD20Siglec-2/CD22CD30CD38MUC-1/CD227CD AntigensT Cell CD ProteinsB Cell CD ProteinsNK Cell CD ProteinsMacrophage CD ProteinsMonocyte CD ProteinsStem Cell CD ProteinsPlatelet CD ProteinsErythrocyte CD ProteinsDendritic Cell CD ProteinsEpithelial cell CD ProteinsEndothelial cell CD ProteinsSignal Transduction-related CD ProteinsCell Adhesion-related CD ProteinsFc ReceptorsFc-gamma ReceptorFcRnFc-epsilon ReceptorFc alpha/mu ReceptorPolymeric Immunoglobulin ReceptorFcμRFc Receptor-like ProteinsImmunoglobulin Fc RegionFc alpha RI/CD89Receptor ProteinsReceptor Tyrosine KinasesReceptor Serine/Threonine KinasesReceptor Tyrosine PhosphataseReceptor Guanylyl Cyclase FamilyCell Adhesion Molecules (CAMs)G-Protein-Coupled Receptors (GPCRs)Nuclear Receptor SuperfamilyPattern Recognition ReceptorsNotch familySiglecLeukocyte Immunoglobin-like ReceptorsKiller-Cell Immunoglobulin-like ReceptorsCytokine ReceptorsEnzymes & RegulatorsOxidoreductases (EC 1)Transferases (EC 2)Hydrolases (EC 3)Lyases (EC 4)Isomerases (EC 5)Ligases (EC 6)Translocases (EC 7)Matrix MetalloproteinasesADAMs/ADAMTSsCathepsinCarboxypeptidaseAngiotensin-converting EnzymesCaspaseCarbonic AnhydraseSerine/Threonine Kinase ProteinsProtein Tyrosine KinasesPhosphataseTopoisomeraseProtease InhibitorsProtein Kinase Inhibitor Peptide (PKI)Cyclin-Dependent Kinase Inhibitor ProteinsCystatin FamilyComplement SystemComplement Component 1Complement Component 2Complement Component 3Complement Component 4Complement Component 5Complement Component 6Complement Component 7Complement Component 8Mannose-binding ProteinMASP-1MASP-2Complement Regulatory ProteinsComplement ReceptorUbiquitin Related ProteinsUbiquitin/UBLsUbiquitin EnzymesDeubiquitinaseViral ProteinsSARS-CoV-2 ProteinsZika Virus ProteinsRSV ProteinsHepatitis C Virus ProteinsHepatitis B Virus ProteinsHIV ProteinsHPV ProteinsInfluenza Viruses ProteinsDengue Virus ProteinsEbola Virus ProteinsBacterial/Fungal ProteinsBiotinylated Proteins Fluorescent-labeled ProteinsGMP-grade ProteinsAnimal-free Recombinant ProteinsOthers

分子生物学 •核酸电泳 •载体构建 •核酸提取与纯化 •限制性核酸内切酶 •耗材 •聚合酶链式反应 (PCR, qPCR) •反转录试剂盒 (RT-PCR) 蛋白生物学 •蛋白样本制备 •蛋白纯化 •蛋白电泳、WB 细胞生物学 •细胞培养 •细胞分析 •3D 细胞培养 View More分子生物学 核酸电泳 核酸胶染料 琼脂糖 上样&电泳缓冲液 DNA Marker 载体构建 无缝克隆试剂盒 连接酶 核酸提取与纯化 基因组提取纯化 限制性核酸内切酶 耗材 聚合酶链式反应 (PCR, qPCR) 聚合酶链式反应 (PCR) 荧光定量PCR (qPCR) 反转录试剂盒 (RT-PCR) 反转录PCR RNA 酶抑制剂 蛋白生物学 蛋白样本制备 细胞裂解 洗涤缓冲液 蛋白酶抑制剂 Cocktail 磷酸酶抑制剂 Cocktail 去乙酰化酶抑制剂Cocktail 激酶抑制剂 Cocktail 蛋白纯化 磁力架 磁珠 亲和层析柱 琼脂糖凝胶珠 平衡缓冲液 结合/洗涤缓冲液 蛋白电泳、WB 电泳缓冲液 蛋白 Marker 转膜缓冲液 封闭缓冲液 结合/洗涤缓冲液 化学显色 上样缓冲液 细胞生物学 细胞培养 细胞转染 支原体清除 无菌抗生素溶液 细胞冻存 CEPT cocktail 基础培养基 胎牛血清 平衡盐缓冲液 细胞培养添加剂 解离试剂 细胞分析 细胞增殖与毒性检测 报告基因检测 细胞骨架检测 细胞凋亡与细胞周期检测 抗荧光淬灭剂 线粒体分离 外泌体提取、纯化与鉴定 细胞器研究 3D 细胞培养 基质胶 肿瘤类器官培养基 正常组织类器官培养基

科学进展

产品指南

展会信息

最新动态

生物词典

萌家学堂

定制服务

提交您的定制咨询

ADC 相关定制服务

PROTAC 相关定制服务

标准品定制服务

多肽定制服务

重组蛋白定制

蛋白晶体结构解析服务

寡核苷酸合成

荧光标记服务

稳定同位素类化合物定制合成服务

One-stop CDMO Service

一站式药物筛选平台

虚拟筛选

基于细胞表型的活性筛选

离子通道筛选

激酶谱筛选

SPR 检测服务

分子动力学模拟

GPCR 靶向药物筛选

核受体药物筛选

亲和质谱药物筛选

DEL 合成与筛选

摩尔计算器

稀释计算器

职业发展

Gene

EMC2 - ER membrane protein complex subunit 2 Gene

EMC2 - ER membrane protein complex subunit 2 Gene

基因

蛋白

疾病

相关产品

直系同源

中文名称:ER 膜蛋白复合亚基 2

种属: Homo sapiens

同用名: TTC35; KIAA0103

基因 ID: 9694

|

基因类型: protein coding

关于 EMC2

Cytogenetic location: 8q23.1

Genomic coordinates (GRCh38): 8:108,443,624-108,489,196 (from NCBI)

This gene has 7 transcripts (splice variants) and 222 orthologues. Ubiquitous expression in testis (RPKM 34.1), fat (RPKM 27.5) and 25 other tissues.

功能概要

有助于膜插入酶活性。通过停止转移膜锚序列和尾部锚定膜蛋白插入 ER 膜参与蛋白质插入 ER 膜。位于内质网膜上。是内质网膜的外在成分。 EMC 复合体的一部分。 [由基因组资源联盟提供,2022 年 4 月]

Contributes to membrane insertase activity. Involved in protein insertion into ER membrane by stop-transfer membrane-anchor sequence and tail-anchored membrane protein insertion into ER membrane. Located in endoplasmic reticulum membrane. Is extrinsic component of endoplasmic reticulum membrane. Part of EMC complex. [provided by Alliance of Genome Resources, Apr 2022]

EMC2 基因产物(4)

mRNA

Protein

Name

NM_001329493.2

NP_001316422.1

ER membrane protein complex subunit 2 isoform 1

NM_001329494.2

NP_001316423.1

ER membrane protein complex subunit 2 isoform 3

NM_001329495.2

NP_001316424.1

ER membrane protein complex subunit 2 isoform 4

NM_014673.5

NP_055488.1

ER membrane protein complex subunit 2 isoform 2

EMC2 蛋白结构

TPR_1

TPR_1: Tetratricopeptide repeat (98 - 120)

TPR_19

TPR_19: Tetratricopeptide repeat (133 - 191)

0

100

200

297 a.a.

蛋白主名

其他名称

ER membrane protein complex subunit 2

TPR repeat protein 35

关联疾病

疾病名称

别名

Fanconi Anemia, Complementation Group D2

Fanconi Anemia Complementation Group D2

FANCD2

Fad2

Fa4

Fancd

Fanconi Pancytopenia Type 4

Fanconi Anemia, Complementation Group D

Fanconi Pancytopenia, Type 4

Facd

Fanconi Anemia Complementation Group D

疾病名称

别名

Waldenstroem'S Macroglobulinemia

Waldenstroem'S Macroglobulinemia

Waldenstroem'S Macroglobulinemia

Macroglobulinemia Of Waldenstrom

Lymphoplasmacytic Lymphoma With Igm Gammopathy

Lymphoplasmacytic Lymphoma

Waldenstroem'S Macroglobulinemia

Waldenstroem'S Macroglobulinemia

Macroglobulinemia Of Waldenstrom

Lymphoplasmacytic Lymphoma With Igm Gammopathy

Lymphoplasmacytic Lymphoma

相关产品

直系同源

种属

基因名

来源

基因 ID

Rattus norvegicus

EMC2

RGD

RGD:1310430

Felis catus

EMC2

VGNC

VGNC:61833

Bos taurus

EMC2

VGNC

VGNC:28463

Mus musculus

EMC2

MGD

MGI:1913986

Macaca mulatta

EMC2

VGNC

VGNC:72135

Compound Screening Libraries

实体化合物库

Virtual Screening

虚拟筛选

Customize Your Library

定制专属化合物库

Drug Screening Service

药物筛选服务

sales@MedChemExpress.cn

400-820-3792

联系当地授权经销商

MCE 公司联系我们关于我们全球办事处许可职业发展服务与支持技术支持定制合成服务订购指南售后服务物流政策销售条款和条件技术资源学术文献摩尔计算器稀释计算器复溶计算器比活力计算器

Subscribe to our E-newsletter

姓名

邮箱 *

Sorry, but the email address you supplied was invalid.

Thanks, your subscription has been confirmed. You will hear from us soon.

Submission failed, please try again later.

MedChemExpress (MCE) 只为有资质的科研机构、医药企业基于科学研究或药证申报的用途提供医药研发服务,

不为任何个人或者非科研性质的、非用于药证申报使用等其他用途提供服务。沪(浦)应急管危经许[2021]201709(QFYS)

站点地图 隐私声明

Copyright © 2013-2024 MedChemExpress. All Rights Reserved.

沪ICP备15051369号-4

关注我们获得 MCE 最新资讯

您的账户在别处登录,如果非您本人行为请重置密码!

我们的 Cookie 政策

我们使用 Cookies 和类似技术以提高网站的性能和提升您的浏览体验,部分功能也使用 Cookies 帮助我们更好地理解您的需求,为您提供相关的服务。

如果您有任何关于我们如何处理您个人信息的疑问,请阅读我们的《隐私声明》。

嗨!很高兴为您提供帮助!

尊敬的 MCE 客户您好, 请您选择所在区域,我们将转接对应客服为您服务!

热门区域

北京市

上海市

湖北省

四川省

湖南省

海南省

山东省

浙江省

江苏省

吉林省

福建省

河北省

A

安徽省

澳门特别行政区

B

北京市

C

重庆市

F

福建省

G

贵州省

广东省

甘肃省

广西壮族自治区

H

河北省

黑龙江省

河南省

湖北省

湖南省

海南省

J

吉林省

江苏省

江西省

L

辽宁省

N

内蒙古自治区

宁夏回族自治区

Q

青海省

S

陕西省

山西省

山东省

四川省

上海市

T

台湾省

天津市

X

西藏自治区

新疆维吾尔自治区

香港特别行政区

Y

云南省

Z

浙江省

A

B

C

F

G

H

J

L

N

Q

S

T

X

Y

Z

确认

Einsteinium

Einsteinium

Home

About

Mission

Roadmap

Resources

Team

Contact

Welcome

Wallets

Blog

Home

About

Mission

Roadmap

Resources

Team

Contact

Welcome

Wallets

Blog

 

EINSTEINIUMFunding the future with the future of currency

 

Introducing MIL coin. A brand new evolution of philanthropic spending. 1:3 distribution for EMC2 holders.

READ BLUE PAPER

FOUNDATION

Fundraising

We believe transparency creates a stronger fundraising system. By reducing redundancy and beauracracy, Einsteinium enables the global community to efficiently and securely support scientific research, charitable and political causes, as well as education and technology development.

Open source

As a member of the cryptocurrency community, we are committed to open source software and the continuous improvement of our core functionalities. We believe in the transformative power of grassroots and community-driven organizzations working to resolve income inequality, corruption and break down barriers.

Education

The Einsteinium Foundation (a non-profit organization) is commited to education as a core value. We are dedicated to sharing our ideas openly with others. Our vital goals include the recruitment and development of top talent in the blockchain ecosystem. We welcome everyone to participate in building a better future.

Read more...

OUR MISSION

The Einsteinium Foundation's overarching mission is to utilize emerging blockchain technology to generate funds for scientific research as a philanthropic organization. There are two ways this is accomplished. The first is through a mining tax (collected when new EMC2 are minted) which creates a pool of funds we can use to provide grants to applicants. The second is by maintaining a currency (Einsteinium or EMC2) which allows for a transparent and trustful way to support specific causes. In this regard, the Einsteinium coin is designed to reduce waste and redundancy where it is needed most.We also plan to launch a community-driven crowdfunding process for projects. This enables us to raise awareness for more projects and causes, for our coin, and for and sponsors. This provides additional benefits by promoting cryptocurrency to a wider audience.So far the Foundation has contributed over 16M of EMC2 coins for science projects.Einsteinium is a community coin, meaning that governance is democratized and ownership is decentralized. Read more...

THE EMC2 COIN

The Cryptocurrency

Einsteinium is a digital currency which uses an immutable, decentralized open ledger called a blockchain to ensure security and transparency for all.

The specification

Einsteinium runs on the Proof-Of-Work scrypt algorithm. The total amount coins that will be in circulation after the mining is 245 million coins.

Not an ICO TOKEN

EMC2 was released on march 1st of 2014 as ZERO pre-mine, MINEABLE, COMMUNITY COIN!

Fast

EMC2 has activated SegWit on the network, lightning network second layer protocol and 1 minute block time all of this making transactions fast and reducing blockchain size.

Secure

EMC2 implemented dPoW security mechanism into its core making it 51% attack resistant. Our wallets use up to date encryption and private keys are stored only on your machine.

Distributed

EMC2 is openly traded and mined across the globe. Foundation does not control assets in any way, your coins belong just to you!

Read more...

Wallets

Your EMC2 coins anytime, anywhere.

Download wallet for desktop, laptop or your mobile phone and store EMC2 coins securely on the device of your choice.

Although storing coins on most top exchanges is pretty safe, storing coins on wallet is so far most secure way since only you will have access and control over them.

Latest wallet version is 0.13.5 - Lightsaber. Check wallets page for more info.

Make sure you have a backup of your existing wallet before starting the new one.

Windows Wallet

macOS Wallet

Coinomi Android Wallet

Coinomi iOS Wallet

Weeee Cash

Exchanges

On the following exchanges you can buy or sell EMC2 coins for fiat or other cryptocurrencies:

Bittrex

CoinSpot

atomicDEX

For Developers

If you are looking to integrate EMC2 into your platform and you need access to API or SDK send us a message to: developer@emc2.foundation

Also check out wallet source code on Github .

Everyone is more than welcome to contribute!

If you are looking to set up an EMC2 Lighting network node you can find more info on the Lightning page.

For any other info, just contact us and we will be more than happy to provide assistance!

MEET THE TEAM

Alexander Lucaci

Chairman

New York, New York

Jonathan Lauziere

Board Member and Treasurer

Montreal, Canada

Vladan Bozilovic

IT Lead

Los Angeles, California

Jamie Min

Advisor

Seoul, Korea

Jonathan Lauziere

A University student in Computer Science, Jonathan found interest in cryptocurrencies in late 2013. He started mining (GPUs) in the beginning of 2014. He followed the evolution of new coins that were rising while simultaneously learning about them. In September 2014 he was part of the team who took over the Einsteinium Foundation after most of the original team left. Has been working on Einsteinium since then.

Malden Trifunovic

Malden was an early crypto investor and a serial entrepreneur. Prior to leading EMC2, he ran a software consulting business for 15 years supporting clients in finance, marketing, manufacturing, and the retail sector. He also worked for IT service and software providers. Malden has a Master’s Degree in Microprocessors design, and has been a C++ developer since the age of 14.

Ben Kurland

Ben is a blockchain enthusiast and actor who most notably appeared in the 5 time Academy Award winning film, The Artist. Prior to joining the Foundation, Ben was a managing partner in a financial mediation corporation, had produced two films and has also worked at a non-profit serving the greater Los Angeles community.

Vladan Bozilovic

Vladan is software developer with extensive experience and management skills. Started working at young age as developer for globally successful companies. He is well-versed in all phases of the software development life cycle, with a strong knowledge of web and mobile technologies, networks, data structures, testing and many more. Currently leading development of all software projects under Einsteinium Foundation and guarantee that they are stable, secure, high quality products delivered on time.

Alexander Lucaci

Alex is a biologist and PhD student at Temple University with classroom education and real world practical experience. His track record demonstrates focus, a thirst for knowledge, and a commitment to scientific contribution and collaboration. He has a deep interest in the impact at the crossroads of science and crypto. He brings to the Einsteinium Foundation a scientific voice, perspective and accuracy.

Matija Mitic

Matija is a Computer Science graduate with a pratical experience in developing real business software products. His interest in blockchain began in 2017 when he started with training course powered by Einsteinium foundation which afterwards led him to take control of Einsteinium Core development. He is still in process of learning, and he will always be.

Alex Micic

Investment analysis professional with substantial consulting, strategy, corporate finance, business development and investment management experience focused on the Financial Services (Commercial and Investment Banking, Capital Markets, Mortgage Banking, Insurance), Real Estate, other industries and a variety of startups and innovative technologies including FinTech, Blockchain, Crypto Markets, etc. Specialties: Investment Analysis, Portfolio Management, Financial Services, Capital Markets, Investment Banking, Real Estate, Mortgage Banking, Insurance, Capital Raising, Crowdfunding, FinTech, Blockchain, Cryptocurrencies, etc.

Bojan Stojcetovic

Director, actor, composer and songwriter. He graduated acting in Belgrade, and as an actor he has 50 performances behind. As a director, he made significant performances, and some of them are the most viewed comedies. His lyrics are played very often, and as a composer he left high impression in two movies, and several musicals. For 40 years, he had taken part in more than 100 projects.

Milan Kalinic

He graduated from the Department of Theatre, Film and Telivision Acting at the Faculty of Arts in Belgrade.

He has appeared in more than 30 projects.

He is considered one of the most popular tv hosts in the Balkans.

Danielle Sremac

Author, international affairs expert, multimedia and business development specialist. She is the President of the Serbian Institute in Washington, DC. and has appeared on hundreds of television and radio shows in the US and internationally, including FoxNews, NBC, CBS, MSNBC, CNN, C-SPAN, BBC, NPR Radio and many others, and a guest speaker at think tanks and universities including Carnegie Endowment for Peace, CATO Institute and others. Born in Belgrade, Serbia, Danielle grew up in the United States. She received her Bachelor’s degree in Philosophy from John Carroll University in Cleveland, Ohio and Master’s Degree in International Affairs at the American University in Washington, DC. She also studied piano and flute at Case Western Reserve University’s Cleveland Institute of Music.

Roberto Quaglia

Roberto Quaglia is an Italian science fiction writer. Many of his works have been translated and published in Romania, and some have also been translated into English, Russian, Spanish, French, Czech, Hungarian and Dutch. Quaglia has held a variety of jobs, among them photographer, owner and barman of a pub, internet entrepreneur and politician. From the beginning of 1995 to the end of 1997 he was a Councilor in Genoa.

Interested in becoming a part of the team? Send us a message below!

Get in touch

JOIN OUR TALKS

Please join our Telegram, Discord, or follow us on Twitter. We are most active on Telegram (t.me/Emc2_official) so we encourage you to join us there! You can get up to the minute information, share your ideas and perspectives, get direct answers to all your questions, and get to know those who are most directly involved with EMC2.

OR CONTACT US VIA FORM BELOW

Email Address

*

Subject

*

Message

*

Thank you!

Subscribe

Sign up with your email address to receive news and updates.

Email Address

Sign Up

We respect your privacy.

Thank you for your subscription to The Einsteinium Foundation email list.

Back To Top

FAQ

Newsletters

Developers blog

More about Einsteinium:

Coin Specification

Mining Info

Bitcointalk Forum

Block Explorer

Other:

Cookies policy

Privacy policy

Current price

Latest tweet

Einsteinium

EINSTEINIUM FOUNDATION — MONTHLY UPDATE FOR MARCH 2023

https://t.co/dr19ngc34z

Apr 2, 2023, 12:04 PM

Quebec, CanadaEinsteinium Foundation 2021

E = mc² Calculator

E = mc² Calculator

We’re hiring!EmbedShare viaE = mc² CalculatorCreated by Bogna SzykReviewed by Steven WoodingLast updated: Jan 18, 2024Table of contents:Einstein's theory of relativityMass energy equivalence formulaConsequences of E = mc²FAQYou can bet that anyone you meet will at least have heard about this famous equation. You have probably come across it a hundred times yourself. But what does E equals mc squared actually mean? What is the mysterious mass-energy equivalence principle? What had Einstein to do with it? Continue reading to find out!Einstein's theory of relativity

In 1905, Albert Einstein proposed a theory that stated that mass and energy are equivalent. It meant that the law of conservation of energy (it says that the sum of potential energy and kinetic energy of a body is constant) and the law of conservation of mass are, in fact, the same. Also, Einstein stated that even a particle at rest has some energy, called its rest energy. You can find more information about the energy of an object in our potential energy calculator and our kinetic energy calculator.Mass energy equivalence formula

All right, you probably know that:E=mc2E = mc^2E=mc2But what exactly do the letters in this famous equation stand for?

mmm – Mass of an object in kilograms (kg);

ccc – Speed of light – a constant value of 299,792,458 m/s; and

EEE – Rest energy of the object in joules (J).

Make sure that the mass of the object is in the unit of kilograms. If not, you can use our weight converter to express the object's mass value in kilograms easily. You can visit our energy conversion calculator if you want to learn how to convert the calculated energy value into other units of energy.Consequences of E = mc²

Once you start to think about it, the consequences of the formulation of E = mc² equation were astounding. Einstein proposed a world in which mass is just energy waiting to be 'set free'. And not just some energy – an enormous amount of it.

The average adult weight is 62 kg. Such a person, according to Einstein, has a rest energy of 5.6 × 1012 megajoules (MJ). You can check it with our E = mc² calculator. Just for comparison, the bomb dropped on Nagasaki had the energy of 8.4 × 107 MJ. In essence, if you managed to explode and set all of your rest energy free (which is not achievable... yet), you would cause the same destruction as over 66,000 nuclear bombs. Saying it's a lot is definitely an understatement.

This formula was a lifesaver for everyone trying to understand how the universe works. It explained why radioactive materials don't 'melt' while emitting streams of particles (it is because of the extreme efficiency of converting mass to energy). It also explains why the stars don't run out of hydrogen, their primary fuel, for billions of years. Suddenly, the age of the universe appeared much more credible. To learn more about this topic, you can also explore our relativistic kinetic energy calculator, where the formula is almost identical.FAQ

What is c in E=mc²?c denotes the speed of light in vacuum (299,792,458 m/s). That means that even a tiny mass is equivalent to a significant amount of rest energy.What is the meaning of E=mc²?Mass and energy are interchangeable. On the one hand, we can turn mass into energy as in nuclear power plants. On the other hand, high-energy photons can create matter (usually as the particle-antiparticle pair, e.g., electron and positron).How much energy does a Uranium-235 fission reaction yields?Assuming that 0.1% of the total mass of Uranium-235 converts to energy through fission reaction:

Take the 235U mass, which is about 235 u.

Convert the mass to kilograms: m = 235 × 1.66×10⁻²⁷ kg = 3.9×10⁻²⁵ kg.

Evalue the mass that converts to energy: Δm = 0.1% × 3.9·10⁻²⁵ kg = 3.9×10⁻²⁸ kg.

Multiply it by the squared speed of light, c² = 9×10¹⁶ m²/s².

The resulting energy equals about 3.51×10⁻¹¹ J or 219 MeV.

What is the mass deficit for the D-T fusion reaction?The deuterium-tritium fusion reaction yields 17.6 MeV energy. To find the mass deficit:

Convert the energy to joules: 17.6 MeV = 2.82×10⁻¹² J.

Divide it by the squared speed of light: 2.82×10⁻¹² / 9×10¹⁶ = 3.13×10⁻²⁹ kg.

We can also write it using the atomic unis: 3.13×10⁻²⁹ / 1.66×10⁻²⁷ = 0.019 u.

Bogna SzykMasslbEnergyMJCheck out 8 similar relativity calculators Bug-rivet paradoxElectron speedGravitational time dilation… 5 morePeople also viewed…Black FridayHow to get best deals on Black Friday? The struggle is real, let us help you with this Black Friday calculator!Black Friday CalculatorIdeal egg boilingQuantum physicist's take on boiling the perfect egg. Includes times for quarter and half-boiled eggs.Ideal Egg Boiling CalculatorPressureUse the pressure calculator to find the pressure exerted by a force on a specific area.Pressure CalculatorSpecific impulseEstimate how efficiently an engine generates thrust using the specific impulse calculator.Specific Impulse CalculatorOther Physics calculatorsEnglishEnglishPortuguese (Português)About Omni CalculatorCalculator collectionsEditorial policiesAll calculatorsPress kitBlogJournalist's Guide to NumbersContactPartnershipsWe’re hiring!Copyright by Omni Calculator sp. z o.o.Privacy, Cookies & Terms of ServiceBiology (98)Chemistry (98)Construction (144)Conversion (292)Ecology (30)Everyday life (261)Finance (565)Food (66)Health (439)Math (660)Physics (508)Sports (104)Statistics (182)Other (180)Discover Omni (40)

Structure of the ER membrane complex, a transmembrane-domain insertase | Nature

Structure of the ER membrane complex, a transmembrane-domain insertase | Nature

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain

the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in

Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles

and JavaScript.

Advertisement

View all journals

Search

Log in

Explore content

About the journal

Publish with us

Subscribe

Sign up for alerts

RSS feed

nature

articles

article

Article

Published: 03 June 2020

Structure of the ER membrane complex, a transmembrane-domain insertase

Lin Bai 

ORCID: orcid.org/0000-0002-7535-78191, Qinglong You1, Xiang Feng1, Amanda Kovach1 & …Huilin Li 

ORCID: orcid.org/0000-0001-8085-89281 Show authors

Nature

volume 584, pages 475–478 (2020)Cite this article

13k Accesses

77 Citations

64 Altmetric

Metrics details

Subjects

Cryoelectron microscopyEnzyme mechanismsProtein translocation

AbstractThe endoplasmic reticulum (ER) membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into the ER membrane, and it is also responsible for inserting the TMH of some tail-anchored proteins1,2,3. How EMC accomplishes this feat has been unclear. Here we report the first, to our knowledge, cryo-electron microscopy structure of the eukaryotic EMC. We found that the Saccharomyces cerevisiae EMC contains eight subunits (Emc1–6, Emc7 and Emc10), has a large lumenal region and a smaller cytosolic region, and has a transmembrane region formed by Emc4, Emc5 and Emc6 plus the transmembrane domains of Emc1 and Emc3. We identified a five-TMH fold centred around Emc3 that resembles the prokaryotic YidC insertase and that delineates a largely hydrophilic client protein pocket. The transmembrane domain of Emc4 tilts away from the main transmembrane region of EMC and is partially mobile. Mutational studies demonstrated that the flexibility of Emc4 and the hydrophilicity of the client pocket are required for EMC function. The EMC structure reveals notable evolutionary conservation with the prokaryotic insertases4,5, suggests that eukaryotic TMH insertion involves a similar mechanism, and provides a framework for detailed understanding of membrane insertion for numerous eukaryotic integral membrane proteins and tail-anchored proteins.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 51 print issues and online access185,98 € per yearonly 3,65 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Purification of the yeast EMC and identification of EMC client proteins.Fig. 2: Structure of the yeast EMC.Fig. 3: The transmembrane region of the yeast EMC contains a client-binding pocket.Fig. 4: A model for client TMH insertion by the eukaryotic EMC.

Data availability

The cryo-EM 3D map of the S. cerevisiae EMC complex has been deposited at the Electron Microscopy Data Bank (EMDB) database with accession code EMD-21587. The corresponding atomic model was deposited at the RCSB Protein Data Bank (PDB) with accession code 6WB9. The TMT mass spectrometry data and the real-space correlation coefficients of all residues with experimental densities data are provided in Supplementary Tables 1–3. The uncropped SDS–PAGE gels used in Figs. 1a, 3g and Extended Data Fig. 6b can be found in Supplementary Fig. 1.

ReferencesShurtleff, M. J. et al. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 7, e37018 (2018).Article 

Google Scholar 

Chitwood, P. J., Juszkiewicz, S., Guna, A., Shao, S. & Hegde, R. S. EMC is required to initiate accurate membrane protein topogenesis. Cell 175, 1507–1519 (2018).Article 

CAS 

Google Scholar 

Guna, A., Volkmar, N., Christianson, J. C. & Hegde, R. S. The ER membrane protein complex is a transmembrane domain insertase. Science 359, 470–473 (2018).Article 

ADS 

CAS 

Google Scholar 

Chen, Y. & Dalbey, R. E. Oxa1 superfamily: new members found in the ER. Trends Biochem. Sci. 43, 151–153 (2018).Article 

CAS 

Google Scholar 

Anghel, S. A., McGilvray, P. T., Hegde, R. S. & Keenan, R. J. Identification of oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep. 21, 3708–3716 (2017).Article 

CAS 

Google Scholar 

Fry, M. Y. & Clemons, W. M. Jr. Complexity in targeting membrane proteins. Science 359, 390–391 (2018).Article 

ADS 

CAS 

Google Scholar 

Richard, M., Boulin, T., Robert, V. J., Richmond, J. E. & Bessereau, J. L. Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc. Natl Acad. Sci. USA 110, E1055–E1063 (2013).Article 

ADS 

CAS 

Google Scholar 

Coelho, J. P. L. et al. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat. Commun. 10, 672 (2019).Article 

ADS 

CAS 

Google Scholar 

Tian, S. et al. Proteomic analysis identifies membrane proteins dependent on the ER membrane protein complex. Cell Rep. 28, 2517–2526 (2019).Article 

CAS 

Google Scholar 

Hiramatsu, N., Tago, T., Satoh, T. & Satoh, A. K. ER membrane protein complex is required for the insertions of late-synthesized transmembrane helices of Rh1 in Drosophila photoreceptors. Mol. Biol. Cell 30, 2859–2942 (2019).Article 

Google Scholar 

Bagchi, P., Inoue, T. & Tsai, B. EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus. eLife 5, e21470 (2016).Article 

Google Scholar 

Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2011).Article 

Google Scholar 

Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).Article 

ADS 

CAS 

Google Scholar 

Lahiri, S. et al. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 12, e1001969 (2014).Article 

Google Scholar 

Wideman, J. G. The ubiquitous and ancient ER membrane protein complex (EMC): tether or not? F1000Res. 4, 624 (2015).Article 

Google Scholar 

Luo, W.-J., Gong, X.-H. & Chang, A. An ER membrane protein, Sop4, facilitates ER export of the yeast plasma membrane [H+]ATPase, Pma1. Traffic 3, 730–739 (2002).Article 

CAS 

Google Scholar 

Bircham, P. W. et al. Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol. Biosyst. 7, 2589–2598 (2011).Article 

CAS 

Google Scholar 

Kudze, T., Mendez-Dorantes, C., Jalloh, C. S. & McClellan, A. J. Evidence for interaction between Hsp90 and the ER membrane complex. Cell Stress Chaperones 23, 1101–1115 (2018).Article 

CAS 

Google Scholar 

Pausch, P. et al. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nat. Commun. 6, 7494 (2015).Article 

ADS 

CAS 

Google Scholar 

Baßler, J. et al. A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. J. Cell Biol. 210, 169–170 (2015).Article 

Google Scholar 

Tang, X. et al. Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase. Proc. Natl Acad. Sci. USA 109, 3287–3292 (2012).Article 

ADS 

CAS 

Google Scholar 

Kedrov, A. et al. Structural dynamics of the YidC:ribosome complex during membrane protein biogenesis. Cell Rep. 17, 2943–2954 (2016).Article 

CAS 

Google Scholar 

Wickles, S. et al. A structural model of the active ribosome-bound membrane protein insertase YidC. eLife 3, e03035 (2014).Article 

Google Scholar 

Kohler, R. et al. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol. Cell 34, 344–353 (2009).Article 

CAS 

Google Scholar 

Kumazaki, K. et al. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 516–520 (2014).Article 

ADS 

CAS 

Google Scholar 

Xin, Y. et al. Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion. FASEB J. 32, 2411–2421 (2018).Article 

Google Scholar 

Kumazaki, K. et al. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4, 7299 (2014).Article 

CAS 

Google Scholar 

Xie, K., Kiefer, D., Nagler, G., Dalbey, R. E. & Kuhn, A. Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45, 13401–13408 (2006).Article 

CAS 

Google Scholar 

Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295–16307 (2013).Article 

CAS 

Google Scholar 

Lin, D. L. et al. The ER membrane protein complex promotes biogenesis of dengue and Zika virus non-structural multi-pass transmembrane proteins to support infection. Cell Rep. 27, 1666–1674 (2019).Article 

CAS 

Google Scholar 

Funakoshi, M. & Hochstrasser, M. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26, 185–192 (2009).Article 

CAS 

Google Scholar 

Kammers, K., Cole, R. N., Tiengwe, C. & Ruczinski, I. Detecting significant changes in protein abundance. EuPA Open Proteom. 7, 11–19 (2015).Article 

CAS 

Google Scholar 

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).Article 

CAS 

Google Scholar 

Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).Article 

Google Scholar 

Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).Article 

Google Scholar 

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).Article 

CAS 

Google Scholar 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).Article 

CAS 

Google Scholar 

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article 

CAS 

Google Scholar 

Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).Article 

CAS 

Google Scholar 

Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).Article 

ADS 

CAS 

Google Scholar 

Download referencesAcknowledgementsCryo-EM images were collected in the David Van Andel Advanced Cryo-Electron Microscopy Suite at Van Andel Research Institute. We thank G. Zhao and X. Meng for assistance with data collection and D. Nadziejka for critical reading of the manuscript. This work was supported by the US National Institutes of Health (NIH) (R01 CA231466 to H.L.) and Van Andel Institute (to H.L.).Author informationAuthors and AffiliationsStructural Biology Program, Van Andel Institute, Grand Rapids, MI, USALin Bai, Qinglong You, Xiang Feng, Amanda Kovach & Huilin LiAuthorsLin BaiView author publicationsYou can also search for this author in

PubMed Google ScholarQinglong YouView author publicationsYou can also search for this author in

PubMed Google ScholarXiang FengView author publicationsYou can also search for this author in

PubMed Google ScholarAmanda KovachView author publicationsYou can also search for this author in

PubMed Google ScholarHuilin LiView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsL.B. and H.L. conceived and designed experiments. L.B. performed most of the experiments. Q.Y., X.F. and A.K. helped with sample preparation and functional assays. L.B. and H.L. analysed the data and wrote the manuscript.Corresponding authorsCorrespondence to

Lin Bai or Huilin Li.Ethics declarations

Competing interests

The authors declare no competing interests.

Additional informationPeer review information Nature thanks Friedrich Förster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Data processing and validation of cryo-EM micrographs and 3D reconstruction.a, Gel filtration profile of the EMC complex. This experiment was repeated more than five times with similar results. b, c, Representative electron micrograph and selected reference-free 2D class averages of the EMC. A total of 4,260 micrographs were recorded with similar quality. d, Cryo-EM data-processing procedure. e, Gold-standard Fourier shell correlations of two independent half maps with or without mask, and with randomized phases, and the validation correlation curves of the atomic model by comparing the model with the final map or with the two half maps. f, Local-resolution map of the 3D map. g, Angular distribution of particles used in the final reconstruction of the 3D map.Extended Data Fig. 2 Protein abundance and localization of nine putative EMC clients in wild-type and Emc3-knockout yeast strains.The eGFP is appended to the C termini of the genes. Scale bar, 10 μm. This experiment was repeated three times with similar results.Extended Data Fig. 3 Cryo-EM 3D density map of the EMC.a–d, The surface-rendered map is shown in front view (a), left side view (b), right side view (c), back view (d), bottom (lumenal) view (e), and top (cytosolic) view (f). Maps are coloured by individual subunits.Extended Data Fig. 4 The fitting of the atomic model and the 3D map in selected regions.3D density map and atomic model of selected regions in each of the eight EMC subunits, as well as the densities of atomic models of the two phospholipid molecules. C-ter, C-terminal domain; HH, horizontal helix; N-ter, N-terminal domain.Extended Data Fig. 5 Structure of the lumenal and cytosolic regions of the yeast EMC.a, Structure of the EMC lumenal region shown in front side and bottom (lumenal) views. The interface area between the C-terminal loop of Emc4 and the NTD2 of Emc1 is outlined by a red rectangle. The dotted black area marks the NTD2 of Emc1, which is an eight-bladed β-propeller. b, Superposition of the NTD2 β-propeller of Emc1 with the structure of a fungus chaperone protein Sqt1 (PDB code 4ZN4). c, Enlarged view of the red-outlined region in a. d, Structure of the EMC cytosolic region in top (cytosolic) and front side views. Emc2 as the organizing centre is shown in cartoon, and the cytosolic domains of Emc3, Emc4 and Emc5 are shown as cylinders.Extended Data Fig. 6 In vitro binding assays between the purified EMC and the TOM complex.a, Gel filtration profiles of the EMC alone, the TOM complex alone, and the mixture of the EMC–TOM complexes. No peak corresponding to the assembly of the EMC–TOM complex was observed. The experiment was repeated three times yielding similar results. b, Peak fractions of the EMC–TOM mixture in a were checked by the Coomassie blue-stained SDS–PAGE gel. The band densities suggest that the peak is simply an overlap of the unbound and separate EMC and TOM. For gel source data, see Supplementary Fig. 1.Extended Data Fig. 7 The 3D EM map of the EMC surface rendered at a low display threshold.The bound lipids/detergents surrounding the transmembrane region of the EMC complex are visible in this low-threshold display. The atomic model in cartoon is superimposed on the 3D map. Note that the horizontal helix of Emc1 is at the ER lumen–membrane boundary.Extended Data Fig. 8 Structural comparison between yeast EMC and E. coli YidC.a, Structure of EMC in cartoon. b, Structure of E. coli YidC in cartoon (PDB code 3WVF). c, Superposed structures of EMC (colour) and YidC (dark grey).Extended Data Fig. 9 Comparisons of protein abundance, localization, and growth of the mutant yeast strains with the wild-type cells.a, Protein abundance and localization of two putative EMC clients (Mrh1 and Fet3) in wild-type and EMC3(K26L) mutant yeast strains. The eGFP is appended to the C termini of the genes. b, Growth experiments of yeast strains containing Emc4 linker loop truncations. The three truncations were Emc4(∆56–60), Emc4(∆51–60), and Emc4(∆46–60). Experiments in a and b were repeated three times with similar results.Extended Data Table 1 Cryo-EM data collection, refinement, and validation statisticsCryo-EM data collection, refinement, and validation statisticsFull size tableSupplementary informationSupplementary Figure 1Uncropped SDS-PAGE gels used for preparing Fig. 1a, Fig. 3g, and Extended Data Fig. 6b.Reporting SummarySupplementary Table 1 | EMC dependent proteins identified by TMT mass spectrometryThe N positions were either from literature as cited or as predicted by TMHMM Server V. 2.0.Supplementary Table 2 | TMT mass spectrometry results of WT and EMC knockout cellsSupplementary Table 3 | The list of real-space correlation coefficients of all residues with experimental densitiesThe correlations were calculated for each amino acid between the atomic model and the 3D density map by PHENIX-MolProbity.Supplementary Video 1 | Cryo-EM structure of the EMC complexA surface rendering of the 3D map, superimposed with the atomic model, is shown rotating around a vertical axis by 360°, followed by another 360° rotation around a horizontal axis. The eight subunits are individually colored. The red densities are from the five resolved N-glycans.Rights and permissionsReprints and permissionsAbout this articleCite this articleBai, L., You, Q., Feng, X. et al. Structure of the ER membrane complex, a transmembrane-domain insertase.

Nature 584, 475–478 (2020). https://doi.org/10.1038/s41586-020-2389-3Download citationReceived: 04 February 2019Accepted: 07 April 2020Published: 03 June 2020Issue Date: 20 August 2020DOI: https://doi.org/10.1038/s41586-020-2389-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

EMC rectifies the topology of multipass membrane proteins

Haoxi WuLuka SmalinskaitėRamanujan S. Hegde

Nature Structural & Molecular Biology (2024)

EMC chaperone–CaV structure reveals an ion channel assembly intermediate

Zhou ChenAbhisek MondalDaniel L. Minor

Nature (2023)

Molecular pathway of mitochondrial preprotein import through the TOM–TIM23 supercomplex

Xueyin ZhouYuqi YangLong Li

Nature Structural & Molecular Biology (2023)

Expulsion mechanism of the substrate-translocating subunit in ECF transporters

Chancievan ThangaratnarajahMark NijlandDirk J. Slotboom

Nature Communications (2023)

The mechanisms of integral membrane protein biogenesis

Ramanujan S. HegdeRobert J. Keenan

Nature Reviews Molecular Cell Biology (2022)

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Access through your institution

Buy or subscribe

Access through your institution

Change institution

Buy or subscribe

Advertisement

Explore content

Research articles

News

Opinion

Research Analysis

Careers

Books & Culture

Podcasts

Videos

Current issue

Browse issues

Collections

Subjects

Follow us on Facebook

Follow us on Twitter

Subscribe

Sign up for alerts

RSS feed

About the journal

Journal Staff

About the Editors

Journal Information

Our publishing models

Editorial Values Statement

Journal Metrics

Awards

Contact

Editorial policies

History of Nature

Send a news tip

Publish with us

For Authors

For Referees

Language editing services

Submit manuscript

Search

Search articles by subject, keyword or author

Show results from

All journals

This journal

Search

Advanced search

Quick links

Explore articles by subject

Find a job

Guide to authors

Editorial policies

Nature (Nature)

ISSN 1476-4687 (online)

ISSN 0028-0836 (print)

nature.com sitemap

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded

content

Professional development

Nature Careers

Nature

Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy

Policy

Use

of cookies

Your privacy choices/Manage cookies

Legal

notice

Accessibility

statement

Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

Close banner

Close

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Email address

Sign up

I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

Close banner

Close

Get the most important science stories of the day, free in your inbox.

Sign up for Nature Briefing

Emc2 - Extreme-scale Mathematically-based Computational Chemistry

Emc2 - Extreme-scale Mathematically-based Computational Chemistry

Contact us

Twitter

LinkedIn

Intranet

Home

Research

Research

Work Package 1

Work Package 2

Work Package 3

Work Package 4

Team

Team

Team JP Piquemal

Team Y Maday

Team L Grigori

Team E Cancès

Seminars

EMC2 Seminars

Events & Conferences

Publications

Positions

News

Select Page

The EMC2 project

Molecular simulation is one of the most dynamic areas of scientific computing. Its field of application is very broad, ranging from theoretical chemistry and drug design to materials science and nanotechnology. Its importance in modern science has been acknowledged by two Nobel Prizes (Kohn & Pople in 1998; Karplus, Levitt & Warshel in 2013). It is also a gold mine of exciting problems for mathematicians and computer scientists.

EMC2 is an ERC Synergy project that aims to overcome some of the current limitations in the field of molecular simulation and aims to provide academic communities and industrial companies with new generation, dramatically faster and quantitatively reliable molecular simulation software. This will enable those communities to address major technological and societal challenges of the 21st century in health, energy and the environment for instance.

News

5th edition of the Mini-school on mathematics for theoretical chemistry and physics

Oct 31, 2023(organized by GDR NBODY with support from CNRS INC, LCT, LJLL, and ERC EMC2) Date: 5-7 June 2023 Location: Sorbonne Université, Pierre et Marie Curie (or Jussieu) campus, 4 place Jussieu, 75005, Paris. Laboratoire Jacques-Louis Lions, tower/corridor 15-16, 3rd floor,...

read more

Colloquium Jacques-Louis Lions

May 16, 2023Jack Dongarra 2021 ACM A.M. Turing Award Laureate The University of Tennessee, Oak Ridge National Laboratory & University of Manchester An Overview of High Performance Computing and Future Requirements 6 June 2023, from 14:00 to 15:00 CEST Amphithéâtre 24, tour...

read more

DFTK school 2022: Numerical methods for density-functional theory simulations

Jul 7, 2022DFTK school  29 to 31 Aug 2022   The DFTK school 2022 will take place from 29 to 31 Aug 2022 at Sorbonne Université, Paris and invites researchers interested in the numerical and mathematical background of electronic-structure simulations as well...

read more

+ All news

What is an ERC Synergy project?

The European Research Council offers many grants to support researchers, the Synergy Grants enable two to four Principal Investigators (PIs) and their teams to bring together complementary skills, knowledge, and resources in new ways, in order to address jointly ambitious research questions. Selected projects receive funds for six years and aim to cross the boundaries between different fields of research, with an emphasis on the synergetic effect of scientific excellence.

Why EMC2 ?

The “Extreme-scale Mathematically-based Computational Chemistry” project aims to achieve scientific breakthroughs in this field by gathering the expertise of a multidisciplinary community at the interfaces of four disciplines: mathematics, chemistry, physics and computer science.

Under the leadership of the four PIs supported by highly recognized teams from three major institutions in the Paris area, EMC2 will develop disruptive methodological approaches and publicly available simulation tools, and apply them to challenging molecular systems.

How ?

Collaboration between researchers and their teams will take place with regular meetings, workshops, participation and organization of conferences to build an effective synergy among the project participants and with other researchers in the world.

Principal Investigators

The four PIs are from three academic institutions:

Yvon Maday from Sorbonne Université

Laura Grigori from INRIA

Jean-Philip Piquemal from Sorbonne Université

Eric Cancès from ENPC

Objectives

Our objective is to overcome some of the current limitations in this field and to provide academic communities and industrial companies with new generation, dramatically faster and quantitatively reliable molecular simulation software, to enable those communities to address major technological and societal challenges of the 21st century (in health, energy, and the environment, for example).

Partners      

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant agreement n° 810367

Home

Research

Team

EMC2 Seminars

Events & Conferences

Publications

Positions

News

© EMC2 2020 - Legal Notice

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPTPrivacy & Cookies Policy

Close

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.

Necessary

Necessary

Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT